Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 2, Pages 251–279
DOI: https://doi.org/10.1070/IM1996v060n02ABEH000070
(Mi im70)
 

This article is cited in 9 scientific papers (total in 9 papers)

Convolution equations containing singular probability distributions

N. B. Engibaryan
References:
Abstract: The article is devoted to equations of the form
\begin{equation} \varphi(x)=g(x)-\int_0^\infty\varphi(t)\,dT(x-t), \tag{1} \end{equation}
where $T$ is a continuous function of bounded variation on $(-\infty;\infty)$ containing a singular component. First we study asymptotic and other properties of the solutions of formal Volterra equations (1) corresponding to $T(x)=0$ for $x\leqslant 0$. Next we introduce and study non-linear factorization equations (NFE) for (1). Factorization is constructed in the case when $T(-\infty)=0$, $T(x)\uparrow$ in $x$, and $T(+\infty)=\mu\leqslant 1$. With the aid of this factorization, we prove existence theorems for homogeneous $(g=0)$ and non-homogeneous equations in the singular case $\mu=1$.
Received: 30.01.1995
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1996, Volume 60, Issue 2, Pages 21–48
DOI: https://doi.org/10.4213/im70
Bibliographic databases:
UDC: 517.9
MSC: 45E10
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “Convolution equations containing singular probability distributions”, Izv. RAN. Ser. Mat., 60:2 (1996), 21–48; Izv. Math., 60:2 (1996), 251–279
Citation in format AMSBIB
\Bibitem{Eng96}
\by N.~B.~Engibaryan
\paper Convolution equations containing singular probability distributions
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 2
\pages 21--48
\mathnet{http://mi.mathnet.ru/im70}
\crossref{https://doi.org/10.4213/im70}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1399417}
\zmath{https://zbmath.org/?q=an:0882.45002}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 2
\pages 251--279
\crossref{https://doi.org/10.1070/IM1996v060n02ABEH000070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0043046959}
Linking options:
  • https://www.mathnet.ru/eng/im70
  • https://doi.org/10.1070/IM1996v060n02ABEH000070
  • https://www.mathnet.ru/eng/im/v60/i2/p21
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:613
    Russian version PDF:252
    English version PDF:21
    References:81
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024