Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 6, Pages 1077–1109
DOI: https://doi.org/10.1070/IM2012v076n06ABEH002615
(Mi im6938)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scattering theory for a class of two-particle operators of mathematical physics (the case of weak interaction)

È. R. Akchurina, R. A. Minlosab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
References:
Abstract: We study the spectral properties of two-particle operators $A$ with weak interaction for spatial dimension $d\geqslant3$. We show that such an operator is unitarily equivalent to the two-particle operator $A_0$ obtained from $A$ by omitting the interaction terms. This is done using a special diagrammatic technique developed in this paper.
Keywords: two-particle operator, wave operators, Cook's method, stationary phase method, diagrams.
Received: 04.02.2011
Revised: 23.03.2012
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 47A40, 35P25, 81U05
Language: English
Original paper language: Russian
Citation: È. R. Akchurin, R. A. Minlos, “Scattering theory for a class of two-particle operators of mathematical physics (the case of weak interaction)”, Izv. Math., 76:6 (2012), 1077–1109
Citation in format AMSBIB
\Bibitem{AkcMin12}
\by \`E.~R.~Akchurin, R.~A.~Minlos
\paper Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction)
\jour Izv. Math.
\yr 2012
\vol 76
\issue 6
\pages 1077--1109
\mathnet{http://mi.mathnet.ru//eng/im6938}
\crossref{https://doi.org/10.1070/IM2012v076n06ABEH002615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074415}
\zmath{https://zbmath.org/?q=an:06132050}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76.1077A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312670100001}
\elib{https://elibrary.ru/item.asp?id=20359152}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871538152}
Linking options:
  • https://www.mathnet.ru/eng/im6938
  • https://doi.org/10.1070/IM2012v076n06ABEH002615
  • https://www.mathnet.ru/eng/im/v76/i6/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024