Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 6, Pages 1099–1111
DOI: https://doi.org/10.1070/IM2005v069n06ABEH002291
(Mi im664)
 

This article is cited in 2 scientific papers (total in 2 papers)

$C^m$-extension of subholomorphic functions from plane Jordan domains

O. A. Zorina
References:
Abstract: We prove that every function $f$ of class $C^m(\,\overline{D}\,)$ subholomorphic in $D$ can be extended to a subholomorphic function of class $C^m$ in the whole $\mathbb C$ with an estimate for the $C^m$-norm, where $m\in(0,2)$ and $D$ is an arbitrary Jordan $B$-domain in $\mathbb C$. We obtain some corollaries and an analogue of the above assertion for the classes $\operatorname{Lip}^m$ with $m\in(0,2]$.
Received: 23.05.2005
Bibliographic databases:
UDC: 517.5
MSC: 31A05, 41A30
Language: English
Original paper language: Russian
Citation: O. A. Zorina, “$C^m$-extension of subholomorphic functions from plane Jordan domains”, Izv. Math., 69:6 (2005), 1099–1111
Citation in format AMSBIB
\Bibitem{Zor05}
\by O.~A.~Zorina
\paper $C^m$-extension of subholomorphic functions from plane Jordan domains
\jour Izv. Math.
\yr 2005
\vol 69
\issue 6
\pages 1099--1111
\mathnet{http://mi.mathnet.ru//eng/im664}
\crossref{https://doi.org/10.1070/IM2005v069n06ABEH002291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2190086}
\zmath{https://zbmath.org/?q=an:1104.31002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235812000002}
\elib{https://elibrary.ru/item.asp?id=9195231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645459685}
Linking options:
  • https://www.mathnet.ru/eng/im664
  • https://doi.org/10.1070/IM2005v069n06ABEH002291
  • https://www.mathnet.ru/eng/im/v69/i6/p21
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024