Abstract:
We prove that every function ff of class Cm(¯D)Cm(¯¯¯¯¯D) subholomorphic in DD can be extended to a subholomorphic function of class CmCm in the whole C with an estimate for the Cm-norm, where m∈(0,2) and D is an arbitrary Jordan B-domain in C. We obtain some corollaries and an analogue of the above assertion for the classes Lipm with m∈(0,2].
\Bibitem{Zor05}
\by O.~A.~Zorina
\paper $C^m$-extension of subholomorphic functions from plane Jordan domains
\jour Izv. Math.
\yr 2005
\vol 69
\issue 6
\pages 1099--1111
\mathnet{http://mi.mathnet.ru/eng/im664}
\crossref{https://doi.org/10.1070/IM2005v069n06ABEH002291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2190086}
\zmath{https://zbmath.org/?q=an:1104.31002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235812000002}
\elib{https://elibrary.ru/item.asp?id=9195231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645459685}
Linking options:
https://www.mathnet.ru/eng/im664
https://doi.org/10.1070/IM2005v069n06ABEH002291
https://www.mathnet.ru/eng/im/v69/i6/p21
This publication is cited in the following 2 articles:
Paul Gauthier, Petr V. Paramonov, Fields Institute Communications, 81, New Trends in Approximation Theory, 2018, 71
A. Boivin, P. M. Gauthier, P. V. Paramonov, “Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces”, Sb. Math., 206:1 (2015), 3–23