Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 4, Pages 805–846
DOI: https://doi.org/10.1070/IM2005v069n04ABEH001665
(Mi im652)
 

This article is cited in 31 scientific papers (total in 31 papers)

Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case

G. A. Chechkin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider vibrations of a membrane which contains many “light” concentrated masses on the boundary. We study the asymptotic behaviour of the frequencies of eigenvibrations of the membrane as the small parameter (which characterizes the diameter and density of the concentrated masses) tends to zero. We construct asymptotic expansions of eigenelements of the corresponding problems and carefully justify these expansions.
Received: 02.06.2004
Bibliographic databases:
UDC: 517.956.226
Language: English
Original paper language: Russian
Citation: G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. Math., 69:4 (2005), 805–846
Citation in format AMSBIB
\Bibitem{Che05}
\by G.~A.~Chechkin
\paper Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
\jour Izv. Math.
\yr 2005
\vol 69
\issue 4
\pages 805--846
\mathnet{http://mi.mathnet.ru//eng/im652}
\crossref{https://doi.org/10.1070/IM2005v069n04ABEH001665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170707}
\zmath{https://zbmath.org/?q=an:1102.35035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233210000008}
\elib{https://elibrary.ru/item.asp?id=9195228}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645521937}
Linking options:
  • https://www.mathnet.ru/eng/im652
  • https://doi.org/10.1070/IM2005v069n04ABEH001665
  • https://www.mathnet.ru/eng/im/v69/i4/p161
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025