Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 4, Pages 771–789
DOI: https://doi.org/10.1070/IM2005v069n04ABEH001662
(Mi im650)
 

This article is cited in 2 scientific papers (total in 2 papers)

The invariance principle for conditional empirical processes formed by dependent random variables

D. V. Poryvai

M. V. Lomonosov Moscow State University
References:
Abstract: We prove the convergence of finite-dimensional distributions and establish density for Nadaraya–Watson conditional empirical processes. The observations are assumed to be described by a strictly stationary sequence of random variables whose mixing coefficients decay polynomially. The proof of density of such processes in the space of continuous functionals uses entropy conditions on the class of indexing functions.
Received: 21.07.2004
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2005, Volume 69, Issue 4, Pages 129–148
DOI: https://doi.org/10.4213/im650
Bibliographic databases:
UDC: 519.214.5+519.234.22
MSC: 60F17, 62G05
Language: English
Original paper language: Russian
Citation: D. V. Poryvai, “The invariance principle for conditional empirical processes formed by dependent random variables”, Izv. RAN. Ser. Mat., 69:4 (2005), 129–148; Izv. Math., 69:4 (2005), 771–789
Citation in format AMSBIB
\Bibitem{Por05}
\by D.~V.~Poryvai
\paper The invariance principle for~conditional empirical processes
formed by~dependent random variables
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 4
\pages 129--148
\mathnet{http://mi.mathnet.ru/im650}
\crossref{https://doi.org/10.4213/im650}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170705}
\zmath{https://zbmath.org/?q=an:1087.60032}
\elib{https://elibrary.ru/item.asp?id=9195226}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 4
\pages 771--789
\crossref{https://doi.org/10.1070/IM2005v069n04ABEH001662}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233210000006}
\elib{https://elibrary.ru/item.asp?id=18238446}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645527787}
Linking options:
  • https://www.mathnet.ru/eng/im650
  • https://doi.org/10.1070/IM2005v069n04ABEH001662
  • https://www.mathnet.ru/eng/im/v69/i4/p129
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:394
    Russian version PDF:222
    English version PDF:5
    References:48
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024