Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 2, Pages 331–343
DOI: https://doi.org/10.1070/IM2005v069n02ABEH000531
(Mi im635)
 

On the Brauer group of an algebraic variety over a finite field

T. V. Zasorina

Vladimir State University
References:
Abstract: For an arithmetic model $X\to C$ of a smooth regular projective variety $V$ over a global field $k$ of positive characteristic, we prove the finiteness of the $l$-primary component of the group $\operatorname{Br}'(X)$ under the conditions that $l$ does not divide the order of the torsion group $\bigl[\operatorname{NS}(V)\bigr]_{\text{tors}}$ and the Tate conjecture on divisorial cohomology classes is true for $V$.
Received: 16.03.2004
Bibliographic databases:
UDC: 512.6
Language: English
Original paper language: Russian
Citation: T. V. Zasorina, “On the Brauer group of an algebraic variety over a finite field”, Izv. Math., 69:2 (2005), 331–343
Citation in format AMSBIB
\Bibitem{Zas05}
\by T.~V.~Zasorina
\paper On the Brauer group of an algebraic variety over a finite field
\jour Izv. Math.
\yr 2005
\vol 69
\issue 2
\pages 331--343
\mathnet{http://mi.mathnet.ru//eng/im635}
\crossref{https://doi.org/10.1070/IM2005v069n02ABEH000531}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136258}
\zmath{https://zbmath.org/?q=an:1081.14027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230436900003}
\elib{https://elibrary.ru/item.asp?id=9176278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645399948}
Linking options:
  • https://www.mathnet.ru/eng/im635
  • https://doi.org/10.1070/IM2005v069n02ABEH000531
  • https://www.mathnet.ru/eng/im/v69/i2/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:481
    Russian version PDF:215
    English version PDF:21
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024