Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 1, Pages 1–37
DOI: https://doi.org/10.1070/IM1996v060n01ABEH000060
(Mi im60)
 

This article is cited in 16 scientific papers (total in 16 papers)

Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod

I. I. Argatov, S. A. Nazarov
References:
Abstract: We consider the junction problem on the union of two bodies: a thin cylinder $Q_\varepsilon$ and a massive body $\Omega(\varepsilon)$ with an opening into which this cylinder has been inserted. The equations on $Q_\varepsilon$ and $\Omega(\varepsilon)$ contain the operators $\mu\Delta$ and $\Delta$ (where $\mu =\mu (\varepsilon)$ is a large parameter and $\Delta$ is the Laplacian): Dirichlet conditions are imposed on the ends of $Q_\varepsilon$ and Neumann conditions on the remainder of the exterior boundary. We study the asymptotic behaviour of a solution $\{u_Q,u_\Omega\}$ as $\varepsilon\to+0$. The principal asymptotic formulae are as follows: $u_Q\sim w$ on $Q_\varepsilon$ and $u_\Omega\sim v$ on $\Omega(\varepsilon)$, where $v$ is a solution of the Neumann problem in $\Omega$ and the Dirac function is distributed along the interval $\Omega\setminus\Omega(0)$ with density $\gamma$. The functions $w$ and $\gamma$, depending on the axis variable of the cylinder, are found as solutions of a so-called resulting problem, in which a second-order differential equation and an integral equation (principal symbol of the operator $(2\pi)^{-1}\ln|\xi|$) are included. In the resulting problem the large parameter $\lvert\ln\varepsilon\rvert$ remains. Various methods of constructing its asymptotic solutions are discussed. The most interesting turns out to be the case $\mu(\varepsilon)=O(\varepsilon^{-2}\lvert\ln\varepsilon\rvert^{-1})$) (even the principal terms of the functions $w$ and $\gamma$ are not found separately). All the asymptotic formulae are justified; the remainders are estimated in the energy norm.
Received: 23.05.1994
Bibliographic databases:
MSC: Primary 35J25, 35B40, 73C35; Secondary 35A35, 35C10
Language: English
Original paper language: Russian
Citation: I. I. Argatov, S. A. Nazarov, “Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod”, Izv. Math., 60:1 (1996), 1–37
Citation in format AMSBIB
\Bibitem{ArgNaz96}
\by I.~I.~Argatov, S.~A.~Nazarov
\paper Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
\jour Izv. Math.
\yr 1996
\vol 60
\issue 1
\pages 1--37
\mathnet{http://mi.mathnet.ru//eng/im60}
\crossref{https://doi.org/10.1070/IM1996v060n01ABEH000060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391116}
\zmath{https://zbmath.org/?q=an:0881.35017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE15400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21344463792}
Linking options:
  • https://www.mathnet.ru/eng/im60
  • https://doi.org/10.1070/IM1996v060n01ABEH000060
  • https://www.mathnet.ru/eng/im/v60/i1/p3
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025