Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 5, Pages 857–880
DOI: https://doi.org/10.1070/IM2012v076n05ABEH002607
(Mi im5883)
 

This article is cited in 9 scientific papers (total in 9 papers)

Isovariant extensors and the characterization of equivariant homotopy equivalences

S. M. Ageev

Belarusian State University, Minsk
References:
Abstract: We extend the well-known theorem of James–Segal to the case of an arbitrary family $\mathcal{F}$ of conjugacy classes of closed subgroups of a compact Lie group $G$: a $G$-map $f\colon\mathbb{X}\to\mathbb{Y}$ of metric $\operatorname{Equiv}_{\mathcal{F}}$-$\mathrm{ANE}$-spaces is a $G$-homotopy equivalence if and only if it is a weak $G$-$\mathcal{F}$-homotopy equivalence. The proof is based on the theory of isovariant extensors, which is developed in this paper and enables us to endow $\mathcal{F}$-classifying $G$-spaces with an additional structure.
Keywords: classifying $G$-spaces, isovariant absolute extensor, weak equivariant homotopy equivalence.
Received: 15.11.2010
Revised: 14.11.2011
Bibliographic databases:
Document Type: Article
UDC: 515.124.62+515.122.4
MSC: 54H15, 54E40, 57S10
Language: English
Original paper language: Russian
Citation: S. M. Ageev, “Isovariant extensors and the characterization of equivariant homotopy equivalences”, Izv. Math., 76:5 (2012), 857–880
Citation in format AMSBIB
\Bibitem{Age12}
\by S.~M.~Ageev
\paper Isovariant extensors and the characterization of equivariant homotopy equivalences
\jour Izv. Math.
\yr 2012
\vol 76
\issue 5
\pages 857--880
\mathnet{http://mi.mathnet.ru//eng/im5883}
\crossref{https://doi.org/10.1070/IM2012v076n05ABEH002607}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024861}
\zmath{https://zbmath.org/?q=an:1266.54081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310548800001}
\elib{https://elibrary.ru/item.asp?id=20359145}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868096252}
Linking options:
  • https://www.mathnet.ru/eng/im5883
  • https://doi.org/10.1070/IM2012v076n05ABEH002607
  • https://www.mathnet.ru/eng/im/v76/i5/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:715
    Russian version PDF:171
    English version PDF:14
    References:82
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024