Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 4, Pages 717–730
DOI: https://doi.org/10.1070/IM2006v070n04ABEH002325
(Mi im587)
 

This article is cited in 12 scientific papers (total in 12 papers)

On some properties of stable and unstable surfaces with prescribed mean curvature

V. A. Klyachin

Volgograd State University
References:
Abstract: We investigate the properties of stable (and unstable) hypersurfaces with prescribed mean curvature in Euclidean space and establish some necessary and sufficient tests for stability stated in terms of the external geometric structure of the surface. We prove an analogue of a well-known theorem of A. D. Aleksandrov that generalizes the variational property of the sphere and find an exact estimate for the extent of a stable tubular surface of constant mean curvature. Our method is based on an analysis of the first and second variations of area-type functionals for the surfaces under consideration.
Received: 23.09.2005
Revised: 13.03.2006
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2006, Volume 70, Issue 4, Pages 77–90
DOI: https://doi.org/10.4213/im587
Bibliographic databases:
UDC: 517.957+514.752
Language: English
Original paper language: Russian
Citation: V. A. Klyachin, “On some properties of stable and unstable surfaces with prescribed mean curvature”, Izv. RAN. Ser. Mat., 70:4 (2006), 77–90; Izv. Math., 70:4 (2006), 717–730
Citation in format AMSBIB
\Bibitem{Kly06}
\by V.~A.~Klyachin
\paper On some properties of stable and unstable surfaces with prescribed mean curvature
\jour Izv. RAN. Ser. Mat.
\yr 2006
\vol 70
\issue 4
\pages 77--90
\mathnet{http://mi.mathnet.ru/im587}
\crossref{https://doi.org/10.4213/im587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2261171}
\zmath{https://zbmath.org/?q=an:1147.53008}
\elib{https://elibrary.ru/item.asp?id=9282138}
\transl
\jour Izv. Math.
\yr 2006
\vol 70
\issue 4
\pages 717--730
\crossref{https://doi.org/10.1070/IM2006v070n04ABEH002325}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241664000004}
\elib{https://elibrary.ru/item.asp?id=13524151}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750877732}
Linking options:
  • https://www.mathnet.ru/eng/im587
  • https://doi.org/10.1070/IM2006v070n04ABEH002325
  • https://www.mathnet.ru/eng/im/v70/i4/p77
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:531
    Russian version PDF:227
    English version PDF:16
    References:92
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024