Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 2, Pages 247–306
DOI: https://doi.org/10.1070/IM2007v071n02ABEH002357
(Mi im569)
 

This article is cited in 2 scientific papers (total in 2 papers)

The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras

M. M. Graev

Scientific Research Institute for System Studies of RAS
References:
Abstract: To every homogeneous space $M=G/H$ of a Lie group $G$ with a compact isotropy group $H$, where the isotropy representation consists of $d$ irreducible components of multiplicity $1$, we assign a compact convex polytope $P=P_M$ in $\mathbb R^{d-1}$, namely, the Newton polytope of the rational function $s(t)$ defined to be the scalar curvature of the invariant metric $t$ on $M$. If $G$ is a compact semisimple group, then the ratio of the volume of $P$ to the volume of the standard $(d-1)$-simplex is a positive integer $\nu(M)>0$. We note that in many cases, $\nu(M)$ coincides with the number $\mathcal E(M)$ of isolated invariant holomorphic Einstein metrics (up to homothety) on $M^{\mathbb C}=G^{\mathbb C}/H^{\mathbb C}$. We deduce from results of Kushnirenko and Bernshtein that in all cases, $\delta_M=\nu(M)-\mathcal E(M)\geqslant0$. To every proper face $\gamma$ of $P$ we assign a non-compact homogeneous space $M_\gamma=G_\gamma/H_P$ with Newton polytope $\gamma$ that is a contraction of $M$. The appearance of a “defect” $\delta_M>0$ is explained by the fact that there is a Ricci-flat holomorphic invariant metric on the complexification of at least one of the $M_\gamma$.
Received: 12.09.2005
Revised: 20.09.2006
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2007, Volume 71, Issue 2, Pages 29–88
DOI: https://doi.org/10.4213/im569
Bibliographic databases:
UDC: 515.16
MSC: 53C25, 53C30
Language: English
Original paper language: Russian
Citation: M. M. Graev, “The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras”, Izv. RAN. Ser. Mat., 71:2 (2007), 29–88; Izv. Math., 71:2 (2007), 247–306
Citation in format AMSBIB
\Bibitem{Gra07}
\by M.~M.~Graev
\paper The number of invariant Einstein metrics on a homogeneous space, Newton polytopes and contractions of Lie algebras
\jour Izv. RAN. Ser. Mat.
\yr 2007
\vol 71
\issue 2
\pages 29--88
\mathnet{http://mi.mathnet.ru/im569}
\crossref{https://doi.org/10.4213/im569}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2316982}
\zmath{https://zbmath.org/?q=an:1136.53039}
\elib{https://elibrary.ru/item.asp?id=9547684}
\transl
\jour Izv. Math.
\yr 2007
\vol 71
\issue 2
\pages 247--306
\crossref{https://doi.org/10.1070/IM2007v071n02ABEH002357}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247427500002}
\elib{https://elibrary.ru/item.asp?id=13552889}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347388043}
Linking options:
  • https://www.mathnet.ru/eng/im569
  • https://doi.org/10.1070/IM2007v071n02ABEH002357
  • https://www.mathnet.ru/eng/im/v71/i2/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:597
    Russian version PDF:248
    English version PDF:35
    References:93
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024