Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 4, Pages 841–856
DOI: https://doi.org/10.1070/IM2006v070n04ABEH002329
(Mi im564)
 

This article is cited in 2 scientific papers (total in 2 papers)

Local extremal problems for bounded analytic functions without zeros

D. V. Prokhorov, S. V. Romanova

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: In the class $B(t)$, $t>0$, of all functions $f(z,t)=e^{-t}+c_1(t)z+c_2(t)z^2+\dots$ that are analytic in the unit disc $U$ and such that $0<|f(z,t)|<1$ in $U$, we obtain asymptotic estimates for the coefficients for small and sufficiently large $t>0$. We suggest an algorithm for determining those $t>0$ for which the canonical functions provide the local maximum of $\operatorname{Re}c_n(t)$ in $B(t)$. We describe the set of functionals $L(f)=\sum_{k=0}^n\lambda_kc_k$ for which the canonical functions provide the maximum of $\operatorname{Re}L(f)$ in $B(t)$ for small and large values of $t$. The proofs are based on optimization methods for solutions of control systems of differential equations.
Received: 11.11.2003
Revised: 21.10.2005
Bibliographic databases:
UDC: 517.54
MSC: 30C45
Language: English
Original paper language: Russian
Citation: D. V. Prokhorov, S. V. Romanova, “Local extremal problems for bounded analytic functions without zeros”, Izv. Math., 70:4 (2006), 841–856
Citation in format AMSBIB
\Bibitem{ProRom06}
\by D.~V.~Prokhorov, S.~V.~Romanova
\paper Local extremal problems for bounded analytic functions without zeros
\jour Izv. Math.
\yr 2006
\vol 70
\issue 4
\pages 841--856
\mathnet{http://mi.mathnet.ru//eng/im564}
\crossref{https://doi.org/10.1070/IM2006v070n04ABEH002329}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2261175}
\zmath{https://zbmath.org/?q=an:1134.30010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241664000008}
\elib{https://elibrary.ru/item.asp?id=9282142}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750856082}
Linking options:
  • https://www.mathnet.ru/eng/im564
  • https://doi.org/10.1070/IM2006v070n04ABEH002329
  • https://www.mathnet.ru/eng/im/v70/i4/p209
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:528
    Russian version PDF:210
    English version PDF:35
    References:105
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024