Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 2, Pages 277–306
DOI: https://doi.org/10.1070/IM2006v070n02ABEH002313
(Mi im558)
 

This article is cited in 21 scientific papers (total in 21 papers)

Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $B_{p, \theta}^r$

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: We obtain order-sharp estimates for bilinear approximations of periodic functions of $2d$ variables of the form $f(x,y)=f(x-y)$, $x, y\in \pi_d = \prod_{j=1}^d[-\pi, \pi]$, obtained from functions $f(x)\in B_{p, \theta}^r$, $1\le p<\infty$, by translating the argument $x\in \pi_d$ by vectors $y\in \pi_d$. We also study the deviations of step hyperbolic Fourier sums on the classes $B_{1, \theta}^r$ and the best orthogonal trigonometric approximations in $L_q$, $ 1<q<\infty$, of functions belonging to these classes.
Received: 08.05.2003
Bibliographic databases:
UDC: 517.5
MSC: 42B99, 41A46, 41A50
Language: English
Original paper language: Russian
Citation: A. S. Romanyuk, “Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $B_{p, \theta}^r$”, Izv. Math., 70:2 (2006), 277–306
Citation in format AMSBIB
\Bibitem{Rom06}
\by A.~S.~Romanyuk
\paper Bilinear and trigonometric approximations of periodic functions
of several variables of Besov classes~$B_{p, \theta}^r$
\jour Izv. Math.
\yr 2006
\vol 70
\issue 2
\pages 277--306
\mathnet{http://mi.mathnet.ru//eng/im558}
\crossref{https://doi.org/10.1070/IM2006v070n02ABEH002313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223241}
\zmath{https://zbmath.org/?q=an:1101.41027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239441000004}
\elib{https://elibrary.ru/item.asp?id=9189028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746644098}
Linking options:
  • https://www.mathnet.ru/eng/im558
  • https://doi.org/10.1070/IM2006v070n02ABEH002313
  • https://www.mathnet.ru/eng/im/v70/i2/p69
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1194
    Russian version PDF:465
    English version PDF:18
    References:189
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024