|
This article is cited in 2 scientific papers (total in 2 papers)
Nonharmonic Fourier series without the Riemann–Lebesgue property
A. M. Sedletskii
Abstract:
We prove that in the class of separated sequences $\lambda_n$ there exists a sequence whose real parts decrease arbitrarily slowly to $-\infty$, so that for some continuous function $f$ on $[0,1]$ the general term of the nonharmonic Fourier series $f(t)\sim\sum c_ne^{\lambda_nt}$ diverges to infinity as
$n=n_k\to\infty$ for all $t\in(0,1)$.
Received: 22.03.1993
Citation:
A. M. Sedletskii, “Nonharmonic Fourier series without the Riemann–Lebesgue property”, Izv. RAN. Ser. Mat., 58:6 (1994), 123–136; Russian Acad. Sci. Izv. Math., 45:3 (1995), 545–557
Linking options:
https://www.mathnet.ru/eng/im527https://doi.org/10.1070/IM1995v045n03ABEH001673 https://www.mathnet.ru/eng/im/v58/i6/p123
|
Statistics & downloads: |
Abstract page: | 489 | Russian version PDF: | 141 | English version PDF: | 14 | References: | 65 | First page: | 2 |
|