Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 6, Pages 1119–1128
DOI: https://doi.org/10.1070/IM2004v068n06ABEH000510
(Mi im510)
 

This article is cited in 8 scientific papers (total in 9 papers)

The matrix Euler–Fermat theorem

V. I. Arnol'd

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We prove many congruences for binomial and multinomial coefficients as well as for the coefficients of the Girard–Newton formula in the theory of symmetric functions. These congruences also imply congruences (modulo powers of primes) for the traces of various powers of matrices with integer elements. We thus have an extension of the matrix Fermat theorem similar to Euler's extension of the numerical little Fermat theorem.
Received: 02.03.2004
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2004, Volume 68, Issue 6, Pages 61–70
DOI: https://doi.org/10.4213/im510
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: 11A99, 15A36
Language: English
Original paper language: Russian
Citation: V. I. Arnol'd, “The matrix Euler–Fermat theorem”, Izv. RAN. Ser. Mat., 68:6 (2004), 61–70; Izv. Math., 68:6 (2004), 1119–1128
Citation in format AMSBIB
\Bibitem{Arn04}
\by V.~I.~Arnol'd
\paper The matrix Euler--Fermat theorem
\jour Izv. RAN. Ser. Mat.
\yr 2004
\vol 68
\issue 6
\pages 61--70
\mathnet{http://mi.mathnet.ru/im510}
\crossref{https://doi.org/10.4213/im510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2108521}
\zmath{https://zbmath.org/?q=an:1167.11300}
\transl
\jour Izv. Math.
\yr 2004
\vol 68
\issue 6
\pages 1119--1128
\crossref{https://doi.org/10.1070/IM2004v068n06ABEH000510}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227279000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746494492}
Linking options:
  • https://www.mathnet.ru/eng/im510
  • https://doi.org/10.1070/IM2004v068n06ABEH000510
  • https://www.mathnet.ru/eng/im/v68/i6/p61
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1741
    Russian version PDF:1080
    English version PDF:130
    References:121
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024