Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 5, Pages 861–910
DOI: https://doi.org/10.1070/IM2004v068n05ABEH000502
(Mi im502)
 

This article is cited in 11 scientific papers (total in 11 papers)

Local formulae for combinatorial Pontryagin classes

A. A. Gaifullin
References:
Abstract: Let $p(|K|)$ be the characteristic class of a combinatorial manifold $K$ given by a polynomial $p$ in the rational Pontryagin classes of $K$. We prove that for any polynomial $p$ there is a function taking each combinatorial manifold $K$ to a cycle $z_p(K)$ in its rational simplicial chains such that: 1) the Poincaré dual of $z_p(K)$ represents the cohomology class $p(|K|)$; 2) the coefficient of each simplex $\Delta$ in the cycle $z_p(K)$ is determined solely by the combinatorial type of $\operatorname{link}\Delta$. We explicitly describe all such functions for the first Pontryagin class. We obtain estimates for the denominators of the coefficients of the simplices in the cycles $z_p(K)$.
Received: 08.06.2004
Bibliographic databases:
UDC: 515.164.3
MSC: Primary 57Q15; Secondary 57R20, 55R40, 55R60
Language: English
Original paper language: Russian
Citation: A. A. Gaifullin, “Local formulae for combinatorial Pontryagin classes”, Izv. Math., 68:5 (2004), 861–910
Citation in format AMSBIB
\Bibitem{Gai04}
\by A.~A.~Gaifullin
\paper Local formulae for combinatorial Pontryagin classes
\jour Izv. Math.
\yr 2004
\vol 68
\issue 5
\pages 861--910
\mathnet{http://mi.mathnet.ru//eng/im502}
\crossref{https://doi.org/10.1070/IM2004v068n05ABEH000502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104849}
\zmath{https://zbmath.org/?q=an:1068.57022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226062400002}
\elib{https://elibrary.ru/item.asp?id=14005068}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29244443343}
Linking options:
  • https://www.mathnet.ru/eng/im502
  • https://doi.org/10.1070/IM2004v068n05ABEH000502
  • https://www.mathnet.ru/eng/im/v68/i5/p13
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:952
    Russian version PDF:419
    English version PDF:29
    References:80
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024