Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 3, Pages 619–641
DOI: https://doi.org/10.1070/IM2004v068n03ABEH000491
(Mi im491)
 

This article is cited in 1 scientific paper (total in 1 paper)

Semilocal Levi-flat extensions

N. V. Shcherbina, G. Tomassini
References:
Abstract: Let $G\subset\mathbb C\times\mathbb R$ be a domain such that $G\times\mathbb R\subset\mathbb C^2$ is strictly pseudoconvex and let $U\subset bG$ be an open subset. We define the hull $\mathscr E(U)$ with respect to the algebra $\mathscr A(G\times\mathbb R)$ and study its properties. It is proved that every continuous function on $U$ can be extended to a continuous function on $\mathscr E(U)$ whose graph is locally foliated by holomorphic curves.
Received: 09.12.2003
Bibliographic databases:
UDC: 517.553
MSC: Primary 32D10, 30H05; Secondary 32T99
Language: English
Original paper language: Russian
Citation: N. V. Shcherbina, G. Tomassini, “Semilocal Levi-flat extensions”, Izv. Math., 68:3 (2004), 619–641
Citation in format AMSBIB
\Bibitem{ShcTom04}
\by N.~V.~Shcherbina, G.~Tomassini
\paper Semilocal Levi-flat extensions
\jour Izv. Math.
\yr 2004
\vol 68
\issue 3
\pages 619--641
\mathnet{http://mi.mathnet.ru//eng/im491}
\crossref{https://doi.org/10.1070/IM2004v068n03ABEH000491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069199}
\zmath{https://zbmath.org/?q=an:1104.32301}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224097700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746518040}
Linking options:
  • https://www.mathnet.ru/eng/im491
  • https://doi.org/10.1070/IM2004v068n03ABEH000491
  • https://www.mathnet.ru/eng/im/v68/i3/p195
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024