Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 2, Pages 243–258
DOI: https://doi.org/10.1070/IM2004v068n02ABEH000473
(Mi im473)
 

This article is cited in 3 scientific papers (total in 3 papers)

A priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity

A. A. Arkhipova

Saint-Petersburg State University
References:
Abstract: We consider quasilinear elliptic non-diagonal systems of equations with strong non-linearity with respect to the gradient. We have already shown that the generalized solution of this problem is Hölder continuous in the neighbourhood of points of the domain at which the norm of the gradient of the solution is sufficiently small in the Morrey space $L^{2,n-2}$. We estimate the Hölder norm of the solution in the neighbourhood of such points in terms of its norm in the Sobolev space $W_2^1$. We obtain a similar result under the Dirichlet boundary condition for points situated in the neighbourhood of the boundary.
Received: 25.09.2003
Bibliographic databases:
UDC: 517.953
MSC: 35B65, 35J65, 35J55
Language: English
Original paper language: Russian
Citation: A. A. Arkhipova, “A priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity”, Izv. Math., 68:2 (2004), 243–258
Citation in format AMSBIB
\Bibitem{Ark04}
\by A.~A.~Arkhipova
\paper A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity
\jour Izv. Math.
\yr 2004
\vol 68
\issue 2
\pages 243--258
\mathnet{http://mi.mathnet.ru//eng/im473}
\crossref{https://doi.org/10.1070/IM2004v068n02ABEH000473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057998}
\zmath{https://zbmath.org/?q=an:1073.35082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222755000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746543131}
Linking options:
  • https://www.mathnet.ru/eng/im473
  • https://doi.org/10.1070/IM2004v068n02ABEH000473
  • https://www.mathnet.ru/eng/im/v68/i2/p23
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:352
    Russian version PDF:184
    English version PDF:19
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024