Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 2, Pages 223–241
DOI: https://doi.org/10.1070/IM2004v068n02ABEH000472
(Mi im472)
 

This article is cited in 10 scientific papers (total in 11 papers)

Almost everywhere convergence over cubes of multiple trigonometric Fourier series

N. Yu. Antonov
References:
Abstract: Under certain conditions on a function $\varphi\colon[0,+\infty)\to[0,+\infty)$ we prove a theorem asserting that the convergence almost everywhere of trigonometric Fourier series for all functions of class $\varphi(L)_{[-\pi,\pi)}$ implies the convergence over cubes of the multiple Fourier series and all its conjugates for an arbitrary function $f\in\varphi(L)(\log^+L)^{d-1}_{[-\pi,\pi)^d}$, $d\in\mathbb N$. It follows from this and an earlier result of the author on the convergence almost everywhere of Fourier series of functions of one variable and class $L(\log^+L)(\log^+\log^+\log^+L)_{[-\pi,\pi)}$ that if $f\in L(\log^+L)^d(\log^+\log^+\log^+L)_{[-\pi,\pi)^d}$, $d\in\mathbb N$, then the Fourier series of $f$ and all its conjugates converge over cubes almost everywhere.
Received: 24.11.2002
Bibliographic databases:
UDC: 517.518
Language: English
Original paper language: Russian
Citation: N. Yu. Antonov, “Almost everywhere convergence over cubes of multiple trigonometric Fourier series”, Izv. Math., 68:2 (2004), 223–241
Citation in format AMSBIB
\Bibitem{Ant04}
\by N.~Yu.~Antonov
\paper Almost everywhere convergence over cubes of multiple trigonometric Fourier series
\jour Izv. Math.
\yr 2004
\vol 68
\issue 2
\pages 223--241
\mathnet{http://mi.mathnet.ru//eng/im472}
\crossref{https://doi.org/10.1070/IM2004v068n02ABEH000472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057997}
\zmath{https://zbmath.org/?q=an:1062.42004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222755000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746546295}
Linking options:
  • https://www.mathnet.ru/eng/im472
  • https://doi.org/10.1070/IM2004v068n02ABEH000472
  • https://www.mathnet.ru/eng/im/v68/i2/p3
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:759
    Russian version PDF:285
    English version PDF:19
    References:114
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024