Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 5, Pages 971–1005
DOI: https://doi.org/10.1070/IM2011v075n05ABEH002561
(Mi im4697)
 

This article is cited in 6 scientific papers (total in 6 papers)

The transition constant for arithmetic hyperbolic reflection groups

V. V. Nikulinab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Department of Mathematical Sciences, University of Liverpool
References:
Abstract: Using the results and methods of our papers [1], [2], we show that the degree of the ground field of an arithmetic hyperbolic reflection group does not exceed 25 in dimensions $n\geqslant 6$, and 44 in dimensions 3, 4, 5. This significantly improves our estimates obtained in [2]–[4]. We also use recent results in [5] and [6] to reduce the last bound to 35. We also review and correct the results of [1], § 1.
Keywords: group generated by reflections, arithmetic group, hyperbolic space, number field, field of definition, quadratic form.
Received: 04.08.2010
Bibliographic databases:
Document Type: Article
UDC: 512.817.72+512.817.6+511.6
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “The transition constant for arithmetic hyperbolic reflection groups”, Izv. Math., 75:5 (2011), 971–1005
Citation in format AMSBIB
\Bibitem{Nik11}
\by V.~V.~Nikulin
\paper The transition constant for arithmetic hyperbolic reflection groups
\jour Izv. Math.
\yr 2011
\vol 75
\issue 5
\pages 971--1005
\mathnet{http://mi.mathnet.ru//eng/im4697}
\crossref{https://doi.org/10.1070/IM2011v075n05ABEH002561}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884665}
\zmath{https://zbmath.org/?q=an:1245.20047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..971N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296665700006}
\elib{https://elibrary.ru/item.asp?id=20358812}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80655129443}
Linking options:
  • https://www.mathnet.ru/eng/im4697
  • https://doi.org/10.1070/IM2011v075n05ABEH002561
  • https://www.mathnet.ru/eng/im/v75/i5/p103
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:565
    Russian version PDF:168
    English version PDF:21
    References:56
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024