Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 6, Pages 1081–1100
DOI: https://doi.org/10.1070/IM2003v067n06ABEH000458
(Mi im458)
 

This article is cited in 8 scientific papers (total in 8 papers)

Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals

A. N. Bakhvalov

M. V. Lomonosov Moscow State University
References:
Abstract: Sufficient conditions are established for the convergence of the multiple Fourier integral of a Pringsheim integrable function (in the sense of convergence of partial integrals over parallelepipeds) in terms of the membership of the function in classes of bounded $\Lambda$-variation. These conditions require the following: the function should belong to a class of bounded harmonic variation, the point under consideration should be regular, the harmonic variation should behave “well” in the neighbourhood of the point, and the function should be continuous with respect to the harmonic variation on a special subset in the neighbourhood of infinity. It is also shown that, in general, neither of the last two conditions can be dropped.
Received: 17.12.2002
Bibliographic databases:
UDC: 517.518
Language: English
Original paper language: Russian
Citation: A. N. Bakhvalov, “Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals”, Izv. Math., 67:6 (2003), 1081–1100
Citation in format AMSBIB
\Bibitem{Bak03}
\by A.~N.~Bakhvalov
\paper Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals
\jour Izv. Math.
\yr 2003
\vol 67
\issue 6
\pages 1081--1100
\mathnet{http://mi.mathnet.ru//eng/im458}
\crossref{https://doi.org/10.1070/IM2003v067n06ABEH000458}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2032089}
\zmath{https://zbmath.org/?q=an:1068.42010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000189123100001}
\elib{https://elibrary.ru/item.asp?id=14447845}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748548720}
Linking options:
  • https://www.mathnet.ru/eng/im458
  • https://doi.org/10.1070/IM2003v067n06ABEH000458
  • https://www.mathnet.ru/eng/im/v67/i6/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024