Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 4, Pages 665–680
DOI: https://doi.org/10.1070/IM2011v075n04ABEH002548
(Mi im4458)
 

This article is cited in 9 scientific papers (total in 9 papers)

On conditions for invertibility of difference and differential operators in weight spaces

M. S. Bichegkuev

North-Ossetia State University
References:
Abstract: We obtain necessary and sufficient conditions for the invertibility of the difference operator $\mathcal{D}_E\colon D(\mathcal{D}_E)\subset l^p_\alpha \to l^p_\alpha$, $(\mathcal{D}_E x)(n)=x(n+1)-Bx(n)$, $n\in \mathbb{Z}_+$, whose domain $D(\mathcal{D}_E)$ is given by the condition $x(0)\in E$, where $l^p_\alpha=l^p_\alpha(\mathbb{Z}_+,X)$, $p\in[1,\infty]$, is the Banach space of sequences (of vectors in a Banach space $X$) summable with weight $\alpha\colon\mathbb{Z}_+\to (0,\infty)$ for $p\in[1,\infty)$ and bounded with respect to $\alpha$ for $p=\infty$, $B\colon X\to X $ is a bounded linear operator, and $E$ is a closed $B$-invariant subspace of $X$. We give applications to the invertibility of differential operators with an unbounded operator coefficient (the generator of a strongly continuous operator semigroup) in weight spaces of functions.
Keywords: difference operator, spectrum of an operator, invertible operator, weight spaces of sequences and functions, linear relation, differential operator.
Received: 11.02.2010
Revised: 18.11.2010
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 47B37, 47B39
Language: English
Original paper language: Russian
Citation: M. S. Bichegkuev, “On conditions for invertibility of difference and differential operators in weight spaces”, Izv. Math., 75:4 (2011), 665–680
Citation in format AMSBIB
\Bibitem{Bic11}
\by M.~S.~Bichegkuev
\paper On conditions for invertibility of difference and differential operators in weight spaces
\jour Izv. Math.
\yr 2011
\vol 75
\issue 4
\pages 665--680
\mathnet{http://mi.mathnet.ru//eng/im4458}
\crossref{https://doi.org/10.1070/IM2011v075n04ABEH002548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2866184}
\zmath{https://zbmath.org/?q=an:1228.47034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..665B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294215000001}
\elib{https://elibrary.ru/item.asp?id=20358798}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053519927}
Linking options:
  • https://www.mathnet.ru/eng/im4458
  • https://doi.org/10.1070/IM2011v075n04ABEH002548
  • https://www.mathnet.ru/eng/im/v75/i4/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024