Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 4, Pages 695–779
DOI: https://doi.org/10.1070/IM2003v067n04ABEH000443
(Mi im443)
 

This article is cited in 14 scientific papers (total in 14 papers)

Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels

B. V. Pal'tsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
References:
Abstract: We obtain asymptotic formulae for the eigenvalues of integral convolution operators on a finite interval with homogeneous polar (complex) kernels. In the Fourier–Laplace images, the eigenvalue and eigenfunction problems are reduced to the Hilbert linear conjugation problem for a holomorphic vector-valued function with two components. This problem is in turn reduced to a system of integral equations on the half-line, and analytic properties of solutions of this system are studied in the Mellin images in Banach spaces of holomorphic functions with fixed poles. We study the structure of the canonical matrix of solutions of this Hilbert problem at the singular points, along with its asymptotic behaviour for large values of the reduced spectral parameter. The investigation of the resulting characteristic equations yields three terms (four in the positive self-adjoint case) of the asymptotic expansions of the eigenvalues, along with estimates of the remainders.
Received: 23.05.2002
Bibliographic databases:
UDC: 517.948.32+35
MSC: 45E10, 45C05, 30E25
Language: English
Original paper language: Russian
Citation: B. V. Pal'tsev, “Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels”, Izv. Math., 67:4 (2003), 695–779
Citation in format AMSBIB
\Bibitem{Pal03}
\by B.~V.~Pal'tsev
\paper Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
\jour Izv. Math.
\yr 2003
\vol 67
\issue 4
\pages 695--779
\mathnet{http://mi.mathnet.ru//eng/im443}
\crossref{https://doi.org/10.1070/IM2003v067n04ABEH000443}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001765}
\zmath{https://zbmath.org/?q=an:1068.45002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186267800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748676693}
Linking options:
  • https://www.mathnet.ru/eng/im443
  • https://doi.org/10.1070/IM2003v067n04ABEH000443
  • https://www.mathnet.ru/eng/im/v67/i4/p67
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025