Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 3, Pages 439–460
DOI: https://doi.org/10.1070/IM2003v067n03ABEH000434
(Mi im434)
 

This article is cited in 18 scientific papers (total in 18 papers)

c-fans and Newton polyhedra of algebraic varieties

B. Ya. Kazarnovskii

Scientific Technical Centre "Informregistr"
References:
Abstract: To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus.
Received: 15.06.2001
Bibliographic databases:
UDC: 512.7+514.172
MSC: 52B20, 14M25, 14C17
Language: English
Original paper language: Russian
Citation: B. Ya. Kazarnovskii, “c-fans and Newton polyhedra of algebraic varieties”, Izv. Math., 67:3 (2003), 439–460
Citation in format AMSBIB
\Bibitem{Kaz03}
\by B.~Ya.~Kazarnovskii
\paper c-fans and Newton polyhedra of algebraic varieties
\jour Izv. Math.
\yr 2003
\vol 67
\issue 3
\pages 439--460
\mathnet{http://mi.mathnet.ru//eng/im434}
\crossref{https://doi.org/10.1070/IM2003v067n03ABEH000434}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992192}
\zmath{https://zbmath.org/?q=an:1077.14072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185542200002}
\elib{https://elibrary.ru/item.asp?id=14150285}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-15244343648}
Linking options:
  • https://www.mathnet.ru/eng/im434
  • https://doi.org/10.1070/IM2003v067n03ABEH000434
  • https://www.mathnet.ru/eng/im/v67/i3/p23
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:798
    Russian version PDF:350
    English version PDF:34
    References:103
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024