Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 6, Pages 1249–1278
DOI: https://doi.org/10.1070/IM2011v075n06ABEH002571
(Mi im4281)
 

This article is cited in 4 scientific papers (total in 4 papers)

$p$-adic evolution pseudo-differential equations and $p$-adic wavelets

V. M. Shelkovich

St. Petersburg State University of Architecture and Civil Engineering
References:
Abstract: In the theory of $p$-adic evolution pseudo-differential equations (with time variable $t\in\mathbb{R}$ and space variable $x\in \mathbb{Q}_p^n$), we suggest a method of separation of variables (analogous to the classical Fourier method) which enables us to solve the Cauchy problems for a wide class of such equations. It reduces the solution of evolution pseudo-differential equations to that of ordinary differential equations with respect to the real variable $t$. Using this method, we solve the Cauchy problems for linear evolution pseudo-differential equations and systems of the first order in $t$, linear evolution pseudo-differential equations of the second and higher orders in $t$, and semilinear evolution pseudo-differential equations. We derive a stabilization condition for solutions of linear equations of the first and second orders as $t\to \infty$. Among the equations considered are analogues of the heat equation and linear or non-linear Schrödinger equations. The results obtained develop the theory of $p$-adic pseudo-differential equations and can be used in applications.
Keywords: $p$-adic pseudo-differential operator, $p$-adic fractional operator, $p$-adic wavelet bases, $p$-adic pseudo-differential equations.
Received: 31.12.2009
Revised: 12.07.2010
Bibliographic databases:
Document Type: Article
UDC: 517.983.37+517.984.57+512.625.5
MSC: Primary 47G30, 42C40, 11F85; Secondary 26A33
Language: English
Original paper language: Russian
Citation: V. M. Shelkovich, “$p$-adic evolution pseudo-differential equations and $p$-adic wavelets”, Izv. Math., 75:6 (2011), 1249–1278
Citation in format AMSBIB
\Bibitem{She11}
\by V.~M.~Shelkovich
\paper $p$-adic evolution pseudo-differential equations and $p$-adic wavelets
\jour Izv. Math.
\yr 2011
\vol 75
\issue 6
\pages 1249--1278
\mathnet{http://mi.mathnet.ru//eng/im4281}
\crossref{https://doi.org/10.1070/IM2011v075n06ABEH002571}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918897}
\zmath{https://zbmath.org/?q=an:1238.47032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75.1249S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298497200007}
\elib{https://elibrary.ru/item.asp?id=20358822}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84455192054}
Linking options:
  • https://www.mathnet.ru/eng/im4281
  • https://doi.org/10.1070/IM2011v075n06ABEH002571
  • https://www.mathnet.ru/eng/im/v75/i6/p163
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024