Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 5, Pages 1007–1045
DOI: https://doi.org/10.1070/IM2011v075n05ABEH002562
(Mi im4258)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains

D. A. Popov

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
References:
Abstract: We construct Liouville metrics on the two-dimensional torus for which the asymptotic behaviour of the second term in the Weyl formula is evaluated explicitly. We prove the instability of the second term in this formula with respect to small deformations (in the $C^1$ metric) of a Liouville metric, and establish the absence of power reduction in the Hörmander estimate on the class of closed manifolds with smooth metric in the case of integrable geodesic flow and the zero measure of the set of closed geodesics in the subspace of unit spheres of the cotangent bundle.
Keywords: Laplace operator, spectrum, Weyl formula, integer points, geodesic flow.
Received: 18.11.2009
Bibliographic databases:
Document Type: Article
UDC: 517.984.5+511.338
MSC: Primary 11P21, 35P20; Secondary 35J05, 47F05, 58G50
Language: English
Original paper language: Russian
Citation: D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. Math., 75:5 (2011), 1007–1045
Citation in format AMSBIB
\Bibitem{Pop11}
\by D.~A.~Popov
\paper On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
\jour Izv. Math.
\yr 2011
\vol 75
\issue 5
\pages 1007--1045
\mathnet{http://mi.mathnet.ru//eng/im4258}
\crossref{https://doi.org/10.1070/IM2011v075n05ABEH002562}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884666}
\zmath{https://zbmath.org/?q=an:05988246}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75.1007P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296665700007}
\elib{https://elibrary.ru/item.asp?id=20358813}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80555131757}
Linking options:
  • https://www.mathnet.ru/eng/im4258
  • https://doi.org/10.1070/IM2011v075n05ABEH002562
  • https://www.mathnet.ru/eng/im/v75/i5/p139
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:735
    Russian version PDF:224
    English version PDF:29
    References:100
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024