Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 121–144
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000421
(Mi im421)
 

This article is cited in 8 scientific papers (total in 8 papers)

Symplectic structure on a moduli space of sheaves on the cubic fourfold

D. G. Markushevich, A. S. Tikhomirov

Yaroslavl State Pedagogical University named after K. D. Ushinsky
References:
Abstract: We construct a 10-dimensional symplectic moduli space of torsion sheaves on the cubic 4-fold in the 5-dimensional projective space. It parametrizes the stable rank 2 vector bundles on hyperplane sections of the cubic 4-fold which are obtained by the Serre construction from normal elliptic quintics. The natural projection of this moduli space onto the dual projective 5-space is a Lagrangian fibration. The symplectic structure is closely related (and conjecturally equal) to the quasi-symplectic structure induced by the Yoneda pairing on the moduli space.
Received: 10.09.2001
Bibliographic databases:
UDC: 517.2
MSC: 14D20, 14J60, 14F05
Language: English
Original paper language: Russian
Citation: D. G. Markushevich, A. S. Tikhomirov, “Symplectic structure on a moduli space of sheaves on the cubic fourfold”, Izv. Math., 67:1 (2003), 121–144
Citation in format AMSBIB
\Bibitem{MarTik03}
\by D.~G.~Markushevich, A.~S.~Tikhomirov
\paper Symplectic structure on a~moduli space of sheaves on the cubic fourfold
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 121--144
\mathnet{http://mi.mathnet.ru//eng/im421}
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957919}
\zmath{https://zbmath.org/?q=an:1075.14040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200007}
\elib{https://elibrary.ru/item.asp?id=14364836}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748500068}
Linking options:
  • https://www.mathnet.ru/eng/im421
  • https://doi.org/10.1070/IM2003v067n01ABEH000421
  • https://www.mathnet.ru/eng/im/v67/i1/p131
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024