|
This article is cited in 4 scientific papers (total in 4 papers)
The amenability of the substitution group of formal power series
I. K. Babenkoa, S. A. Bogatyib a Institut de Mathématiques et de Modélisation de Montpellier
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We study the amenability property for the group $\mathcal{J}(\mathbf{k})$ of
formal power series in one variable with coefficients in a commutative
ring $\mathbf{k}$ with identity. We show that there exists an invariant
mean on the space $C_{\mathrm{u}}^*(\mathcal{J}(\mathbf{k}))$ of uniformly
continuous bounded functions on this group. This is equivalent to the fact
that every continuous action of $\mathcal{J}(\mathbf{k})$ on every compact
space has an invariant probability measure.
Keywords:
topological group, group action, invariant mean.
Received: 20.02.2009 Revised: 04.03.2010
Citation:
I. K. Babenko, S. A. Bogatyi, “The amenability of the substitution group of formal power series”, Izv. Math., 75:2 (2011), 239–252
Linking options:
https://www.mathnet.ru/eng/im4205https://doi.org/10.1070/IM2011v075n02ABEH002533 https://www.mathnet.ru/eng/im/v75/i2/p19
|
Statistics & downloads: |
Abstract page: | 829 | Russian version PDF: | 214 | English version PDF: | 12 | References: | 80 | First page: | 20 |
|