Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 2, Pages 239–252
DOI: https://doi.org/10.1070/IM2011v075n02ABEH002533
(Mi im4205)
 

This article is cited in 4 scientific papers (total in 4 papers)

The amenability of the substitution group of formal power series

I. K. Babenkoa, S. A. Bogatyib

a Institut de Mathématiques et de Modélisation de Montpellier
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the amenability property for the group $\mathcal{J}(\mathbf{k})$ of formal power series in one variable with coefficients in a commutative ring $\mathbf{k}$ with identity. We show that there exists an invariant mean on the space $C_{\mathrm{u}}^*(\mathcal{J}(\mathbf{k}))$ of uniformly continuous bounded functions on this group. This is equivalent to the fact that every continuous action of $\mathcal{J}(\mathbf{k})$ on every compact space has an invariant probability measure.
Keywords: topological group, group action, invariant mean.
Received: 20.02.2009
Revised: 04.03.2010
Bibliographic databases:
Document Type: Article
UDC: 512.546+517.987.5
Language: English
Original paper language: Russian
Citation: I. K. Babenko, S. A. Bogatyi, “The amenability of the substitution group of formal power series”, Izv. Math., 75:2 (2011), 239–252
Citation in format AMSBIB
\Bibitem{BabBog11}
\by I.~K.~Babenko, S.~A.~Bogatyi
\paper The amenability of the substitution group of formal power series
\jour Izv. Math.
\yr 2011
\vol 75
\issue 2
\pages 239--252
\mathnet{http://mi.mathnet.ru//eng/im4205}
\crossref{https://doi.org/10.1070/IM2011v075n02ABEH002533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830241}
\zmath{https://zbmath.org/?q=an:1228.43001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..239B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289889000002}
\elib{https://elibrary.ru/item.asp?id=20358783}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053507837}
Linking options:
  • https://www.mathnet.ru/eng/im4205
  • https://doi.org/10.1070/IM2011v075n02ABEH002533
  • https://www.mathnet.ru/eng/im/v75/i2/p19
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:829
    Russian version PDF:214
    English version PDF:12
    References:80
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024