|
This article is cited in 6 scientific papers (total in 6 papers)
Bases of exponentials, sines and cosines in weighted spaces on a finite interval
S. S. Pukhov M. V. Lomonosov Moscow State University
Abstract:
We obtain a result concerning the basis property
in a weighted space on an interval $(-a,a)$
for a system of exponentials generated by the zeros
of the Fourier transform of a function with singularities
at the ends of the support interval $(-a,a)$.
For an arbitrary $\Delta\in\mathbb{C}$ we find a criterion
for the basis property of the system
$(e^{i(n+\Delta\operatorname{sign} n)t})_{n\in\mathbb{Z}}$
in a weighted space on the interval $(-\pi,\pi)$ and the systems
of sines $(\sin((n+\Delta)t))_{n\in\mathbb{N}}$ and cosines
$1\cup (\cos((n+\Delta)t))_{n\in\mathbb{N}}$ in a weighted
space on the interval $(0,\pi)$. The weight is everywhere
a finite product of polynomial functions.
Keywords:
bases of exponentials, weighted spaces.
Received: 21.08.2009
Citation:
S. S. Pukhov, “Bases of exponentials, sines and cosines in weighted spaces on a finite interval”, Izv. Math., 75:2 (2011), 413–443
Linking options:
https://www.mathnet.ru/eng/im4203https://doi.org/10.1070/IM2011v075n02ABEH002539 https://www.mathnet.ru/eng/im/v75/i2/p195
|
|