Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 91–119
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000420
(Mi im420)
 

This article is cited in 19 scientific papers (total in 19 papers)

Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$

E. D. Livshits
References:
Abstract: We study the problem of the existence of a continuous selection for the metric projection to the set of $n$-link piecewise-linear functions in the space $C[0,1]$. We show that there is a continuous selection if and only if $n=1$ or $n=2$. We establish that there is a continuous $\varepsilon$-selection to $L$ ($L\subset C[0,1]$) if $L$ belongs to a certain class of sets that contains, in particular, the set of algebraic rational fractions and the set of piecewise-linear functions. We construct an example showing that sometimes there is no $\varepsilon$-selection for a set of splines of degree $d>1$.
Received: 12.04.2001
Revised: 28.08.2002
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2003, Volume 67, Issue 1, Pages 99–130
DOI: https://doi.org/10.4213/im420
Bibliographic databases:
UDC: 517.518.8
Language: English
Original paper language: Russian
Citation: E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. RAN. Ser. Mat., 67:1 (2003), 99–130; Izv. Math., 67:1 (2003), 91–119
Citation in format AMSBIB
\Bibitem{Liv03}
\by E.~D.~Livshits
\paper Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
\jour Izv. RAN. Ser. Mat.
\yr 2003
\vol 67
\issue 1
\pages 99--130
\mathnet{http://mi.mathnet.ru/im420}
\crossref{https://doi.org/10.4213/im420}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957918}
\zmath{https://zbmath.org/?q=an:1079.41007}
\transl
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 91--119
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000420}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748485416}
Linking options:
  • https://www.mathnet.ru/eng/im420
  • https://doi.org/10.1070/IM2003v067n01ABEH000420
  • https://www.mathnet.ru/eng/im/v67/i1/p99
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:649
    Russian version PDF:233
    English version PDF:12
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024