Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 55–76
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000418
(Mi im418)
 

This article is cited in 9 scientific papers (total in 9 papers)

Some new results on Borel irreducibility of equivalence relations

V. G. Kanovei, M. Reeken
References:
Abstract: We prove that orbit equivalence relations (ERs, for brevity) of generically turbulent Polish actions are not Borel reducible to ERs of a family which includes Polish actions of $S_\infty$ (the group of all permutations of $\mathbb N$ and is closed under the Fubini product modulo the ideal Fin of all finite sets and under some other operations. We show that $\mathsf T_2$ (an equivalence relation called the equality of countable sets of reals is not Borel reducible to another family of ERs which includes continuous actions of Polish CLI groups, Borel equivalence relations with $\mathbf G_{\delta\sigma}$ classes and some ideals, and is closed under the Fubini product modulo Fin. These results and their corollaries extend some earlier irreducibility theorems of Hjorth and Kechris.
Received: 30.07.2001
Bibliographic databases:
UDC: 510.225
MSC: 03E15, 54E50
Language: English
Original paper language: Russian
Citation: V. G. Kanovei, M. Reeken, “Some new results on Borel irreducibility of equivalence relations”, Izv. Math., 67:1 (2003), 55–76
Citation in format AMSBIB
\Bibitem{KanRee03}
\by V.~G.~Kanovei, M.~Reeken
\paper Some new results on Borel irreducibility of equivalence relations
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 55--76
\mathnet{http://mi.mathnet.ru//eng/im418}
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957916}
\zmath{https://zbmath.org/?q=an:1068.03036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748479303}
Linking options:
  • https://www.mathnet.ru/eng/im418
  • https://doi.org/10.1070/IM2003v067n01ABEH000418
  • https://www.mathnet.ru/eng/im/v67/i1/p59
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:535
    Russian version PDF:208
    English version PDF:17
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024