Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 17–27
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000416
(Mi im416)
 

This article is cited in 6 scientific papers (total in 6 papers)

Group representation of the Cayley forest and some of its applications

N. N. Ganikhodzhaev, U. A. Rozikov

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
References:
Abstract: Cayley forests and products of Cayley trees of order $k\geqslant 1$ are represented as subgroups in the free product of $m$ cyclic groups ($m>k$) of order 2. The automorphism groups of these objects are determined. We give a complete description of the sets of translation-invariant and periodic Gibbs measures for the Ising model on a Cayley forest. We construct a new class of limiting Gibbs measures for the inhomogeneous Ising model on a Cayley tree. We find sufficient conditions for random walks in periodic random media on the forest to be never returning provided that the jumps of the walking particle are bounded.
Received: 27.06.2001
Bibliographic databases:
UDC: 517.98+530.1
MSC: 82B20, 20E08
Language: English
Original paper language: Russian
Citation: N. N. Ganikhodzhaev, U. A. Rozikov, “Group representation of the Cayley forest and some of its applications”, Izv. Math., 67:1 (2003), 17–27
Citation in format AMSBIB
\Bibitem{GanRoz03}
\by N.~N.~Ganikhodzhaev, U.~A.~Rozikov
\paper Group representation of the Cayley forest and some of its applications
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 17--27
\mathnet{http://mi.mathnet.ru//eng/im416}
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957914}
\zmath{https://zbmath.org/?q=an:1065.82005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645984428}
Linking options:
  • https://www.mathnet.ru/eng/im416
  • https://doi.org/10.1070/IM2003v067n01ABEH000416
  • https://www.mathnet.ru/eng/im/v67/i1/p21
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:473
    Russian version PDF:270
    English version PDF:21
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024