|
This article is cited in 5 scientific papers (total in 5 papers)
Multifrequency parametric resonance in a non-linear wave equation
A. Yu. Kolesova, N. Kh. Rozovb a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
Abstract:
We consider the boundary-value problem
$$
u_{tt}+\varepsilon u_t+\biggl(1+\varepsilon\sum_{k=1}^m\alpha_k\cos 2\varphi_k\biggr)u=a^2u_{xx}-u^2u_t,\qquad u\big|_{x=0}=u\big|_{x=\pi}=0,
$$
where $0<\varepsilon\ll 1$, $a>0$, $\varphi_k=\sigma_kt+c_k$, $k=1,\dots,m$.
We show that a suitable choice of a positive integer $m$ and real parameters $\alpha_k$, $\sigma_k$, $k=1,\dots,m$, enables us to make this problem have any prescribed number of exponentially stable time-quasiperiodic solutions bifurcating from zero.
Received: 11.01.2002
Citation:
A. Yu. Kolesov, N. Kh. Rozov, “Multifrequency parametric resonance in a non-linear wave equation”, Izv. RAN. Ser. Mat., 66:6 (2002), 49–64; Izv. Math., 66:6 (2002), 1131–1145
Linking options:
https://www.mathnet.ru/eng/im409https://doi.org/10.1070/IM2002v066n06ABEH000409 https://www.mathnet.ru/eng/im/v66/i6/p49
|
Statistics & downloads: |
Abstract page: | 776 | Russian version PDF: | 311 | English version PDF: | 10 | References: | 74 | First page: | 3 |
|