Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 6, Pages 1131–1145
DOI: https://doi.org/10.1070/IM2002v066n06ABEH000409
(Mi im409)
 

This article is cited in 5 scientific papers (total in 5 papers)

Multifrequency parametric resonance in a non-linear wave equation

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
References:
Abstract: We consider the boundary-value problem
$$ u_{tt}+\varepsilon u_t+\biggl(1+\varepsilon\sum_{k=1}^m\alpha_k\cos 2\varphi_k\biggr)u=a^2u_{xx}-u^2u_t,\qquad u\big|_{x=0}=u\big|_{x=\pi}=0, $$
where $0<\varepsilon\ll 1$, $a>0$, $\varphi_k=\sigma_kt+c_k$, $k=1,\dots,m$.
We show that a suitable choice of a positive integer $m$ and real parameters $\alpha_k$, $\sigma_k$, $k=1,\dots,m$, enables us to make this problem have any prescribed number of exponentially stable time-quasiperiodic solutions bifurcating from zero.
Received: 11.01.2002
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2002, Volume 66, Issue 6, Pages 49–64
DOI: https://doi.org/10.4213/im409
Bibliographic databases:
UDC: 517.926
MSC: 35B10, 35L20
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “Multifrequency parametric resonance in a non-linear wave equation”, Izv. RAN. Ser. Mat., 66:6 (2002), 49–64; Izv. Math., 66:6 (2002), 1131–1145
Citation in format AMSBIB
\Bibitem{KolRoz02}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Multifrequency parametric resonance in a~non-linear wave equation
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 6
\pages 49--64
\mathnet{http://mi.mathnet.ru/im409}
\crossref{https://doi.org/10.4213/im409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1970352}
\zmath{https://zbmath.org/?q=an:1084.35007}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 6
\pages 1131--1145
\crossref{https://doi.org/10.1070/IM2002v066n06ABEH000409}
Linking options:
  • https://www.mathnet.ru/eng/im409
  • https://doi.org/10.1070/IM2002v066n06ABEH000409
  • https://www.mathnet.ru/eng/im/v66/i6/p49
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:776
    Russian version PDF:311
    English version PDF:10
    References:74
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024