Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 4, Pages 735–742
DOI: https://doi.org/10.1070/IM2010v074n04ABEH002505
(Mi im4080)
 

This article is cited in 4 scientific papers (total in 4 papers)

Steiner symmetrization and the initial coefficients of univalent functions

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: We establish the inequality $|a_1|^2-\operatorname{Re}a_1a_{-1}\ge |a_1^*|^2-\operatorname{Re}a_1^*a_{-1}^*$ for the initial coefficients of any function $f(z)=a_1z+a_0+{a_{-1}}/z+\dotsb$ meromorphic and univalent in the domain $D=\{z\colon |z|>1\}$, where $a_1^*$ and $a_{-1}^*$ are the corresponding coefficients in the expansion of the function $f^*(z)$ that maps the domain $D$ conformally and univalently onto the exterior of the result of the Steiner symmetrization with respect to the real axis of the complement of the set $f(D)$. The Pólya–Szegő inequality $|a_1|\ge |a_1^*|$ is already known. We describe some applications of our inequality to functions of class $\Sigma$.
Keywords: Steiner symmetrization, capacity of a set, univalent function, covering theorem.
Received: 27.01.2009
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 4, Pages 75–82
DOI: https://doi.org/10.4213/im4080
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: Primary 30C50; Secondary 30C85
Language: English
Original paper language: Russian
Citation: V. N. Dubinin, “Steiner symmetrization and the initial coefficients of univalent functions”, Izv. RAN. Ser. Mat., 74:4 (2010), 75–82; Izv. Math., 74:4 (2010), 735–742
Citation in format AMSBIB
\Bibitem{Dub10}
\by V.~N.~Dubinin
\paper Steiner symmetrization and the initial coefficients of univalent functions
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 4
\pages 75--82
\mathnet{http://mi.mathnet.ru/im4080}
\crossref{https://doi.org/10.4213/im4080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730011}
\zmath{https://zbmath.org/?q=an:1202.30039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..735D}
\elib{https://elibrary.ru/item.asp?id=20358755}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 4
\pages 735--742
\crossref{https://doi.org/10.1070/IM2010v074n04ABEH002505}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281623100004}
\elib{https://elibrary.ru/item.asp?id=16980381}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049378849}
Linking options:
  • https://www.mathnet.ru/eng/im4080
  • https://doi.org/10.1070/IM2010v074n04ABEH002505
  • https://www.mathnet.ru/eng/im/v74/i4/p75
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:867
    Russian version PDF:262
    English version PDF:34
    References:72
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024