Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 4, Pages 723–734
DOI: https://doi.org/10.1070/IM2010v074n04ABEH002504
(Mi im4021)
 

On the massiveness of exceptional sets of the maximum modulus principle

V. I. Danchenko

Vladimir State University
References:
Abstract: We consider the sets $E_{\nu}(f)=\{z\colon |f(z)|\geqslant \nu\}$ for $\nu>\nu_0(f):=\limsup_{z\to\partial D}|f(z)|$ in the disc $D=\{z\colon |z|<1\}$, where $f(z)$, $z=x+iy$, are complex-valued functions defined on $D$ and having certain smoothness properties with respect to the real variables $x$ and $y$. We obtain estimates for some metric properties of the sets $E_{\nu}(f)$. For example, we prove that, if $\Delta f\in L_1(D)$, then the hyperbolic area of the set $E_\nu(f)$ cannot grow more rapidly than $\nu^{-1-o(1)}$ as $\nu\to 0$, where $o(1)$ is positive, and, if $f_{\bar{z}}\in L_2(D)$, then this area cannot grow more rapidly than $\nu^{-2-o(1)}$. The orders of these estimates with respect to $\nu$ are sharp.
Keywords: hyperbolic distance and area, capacity and potential, polyanalytic function, maximum modulus principle, Green's formulae.
Received: 18.09.2008
Bibliographic databases:
Document Type: Article
UDC: 517.544.5+517.544.45
MSC: Primary 30C85; Secondary 31A15
Language: English
Original paper language: Russian
Citation: V. I. Danchenko, “On the massiveness of exceptional sets of the maximum modulus principle”, Izv. Math., 74:4 (2010), 723–734
Citation in format AMSBIB
\Bibitem{Dan10}
\by V.~I.~Danchenko
\paper On the massiveness of exceptional sets of the maximum modulus principle
\jour Izv. Math.
\yr 2010
\vol 74
\issue 4
\pages 723--734
\mathnet{http://mi.mathnet.ru//eng/im4021}
\crossref{https://doi.org/10.1070/IM2010v074n04ABEH002504}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730010}
\zmath{https://zbmath.org/?q=an:1202.30041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..723D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281623100003}
\elib{https://elibrary.ru/item.asp?id=20358754}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049345283}
Linking options:
  • https://www.mathnet.ru/eng/im4021
  • https://doi.org/10.1070/IM2010v074n04ABEH002504
  • https://www.mathnet.ru/eng/im/v74/i4/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:697
    Russian version PDF:206
    English version PDF:21
    References:114
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024