Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 4, Pages 805–817
DOI: https://doi.org/10.1070/IM2010v074n04ABEH002508
(Mi im3989)
 

This article is cited in 17 scientific papers (total in 17 papers)

On polynomial integrals of a mechanical system on a two-dimensional torus

A. E. Mironovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University, Mechanics and Mathematics Department
References:
Abstract: We shall show that if a natural mechanical system defined on a two-dimensional torus and having a real analytic potential possesses a polynomial integral of odd degree in momenta, then the leading coefficients in the momenta satisfy two identities of a special form. We also show that if the system possesses an integral of the fifth degree in momenta, then there exists an integral of the first degree in momenta.
Keywords: integrable Hamiltonian system, polynomial integral.
Received: 04.09.2008
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 4, Pages 145–156
DOI: https://doi.org/10.4213/im3989
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: English
Original paper language: Russian
Citation: A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus”, Izv. RAN. Ser. Mat., 74:4 (2010), 145–156; Izv. Math., 74:4 (2010), 805–817
Citation in format AMSBIB
\Bibitem{Mir10}
\by A.~E.~Mironov
\paper On polynomial integrals of a~mechanical system on a~two-dimensional torus
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 4
\pages 145--156
\mathnet{http://mi.mathnet.ru/im3989}
\crossref{https://doi.org/10.4213/im3989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730014}
\zmath{https://zbmath.org/?q=an:1211.37071}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..805M}
\elib{https://elibrary.ru/item.asp?id=20358758}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 4
\pages 805--817
\crossref{https://doi.org/10.1070/IM2010v074n04ABEH002508}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281623100007}
\elib{https://elibrary.ru/item.asp?id=16976514}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049352271}
Linking options:
  • https://www.mathnet.ru/eng/im3989
  • https://doi.org/10.1070/IM2010v074n04ABEH002508
  • https://www.mathnet.ru/eng/im/v74/i4/p145
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:757
    Russian version PDF:282
    English version PDF:52
    References:90
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024