Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 2, Pages 425–442
DOI: https://doi.org/10.1070/IM2002v066n02ABEH000384
(Mi im384)
 

This article is cited in 1 scientific paper (total in 2 paper)

Lattice gauge theories and the Florentino conjecture

A. N. Tyurin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We investigate the relations between the space of classes of $\operatorname{SU}(2)$-representations of the fundamental group of a Riemann surface $\Sigma_\Gamma$ equipped with a trinion decomposition corresponding to a 3-valent graph $\Gamma$ and the $\operatorname{SU}(2)$ theory on $\Gamma$. We construct a section of the standard map of the orbit space of the gauge theory on $\Sigma_\Gamma$ onto that of the gauge theory on $\Gamma$. As an application, we prove a conjecture of Florentino.
Received: 20.02.2001
Bibliographic databases:
UDC: 512.7
MSC: 81T13
Language: English
Original paper language: Russian
Citation: A. N. Tyurin, “Lattice gauge theories and the Florentino conjecture”, Izv. Math., 66:2 (2002), 425–442
Citation in format AMSBIB
\Bibitem{Tyu02}
\by A.~N.~Tyurin
\paper Lattice gauge theories and the Florentino conjecture
\jour Izv. Math.
\yr 2002
\vol 66
\issue 2
\pages 425--442
\mathnet{http://mi.mathnet.ru//eng/im384}
\crossref{https://doi.org/10.1070/IM2002v066n02ABEH000384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918849}
\zmath{https://zbmath.org/?q=an:1043.53040|1037.81073}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748496060}
Linking options:
  • https://www.mathnet.ru/eng/im384
  • https://doi.org/10.1070/IM2002v066n02ABEH000384
  • https://www.mathnet.ru/eng/im/v66/i2/p205
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:454
    Russian version PDF:224
    English version PDF:12
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024