Abstract:
We consider homogenization theory on periodic networks, junctions and more general singular objects. We show that the homogenized problem typically has a “non-classical” character. This fact is a distinctive feature of homogenization of elasticity problems in contrast to scalar problems.
We investigate the properties of Sobolev spaces for various singular structures, prove a non-classical homogenization principle for singular periodic structures of general type and describe a “scaling effect” for model problems with two small geometrical parameters.
This publication is cited in the following 117 articles:
S. A. Nazarov, A. S. Slutskii, “Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder”, Sib Math J, 65:2 (2024), 363
S. A. Nazarov, A. S. Slutskii, “Osrednenie skalyarnoi kraevoi zadachi v tonkom periodicheski izlomannom tsilindre”, Sib. matem. zhurn., 65:2 (2024), 374–394
Alexander G. Kolpakov, Sergey I. Rakin, Igor V. Andrianov, Advanced Structured Materials, 170, Sixty Shades of Generalized Continua, 2023, 419
Alexander G. Kolpakov, Sergey I. Rakin, Igor V. Andrianov, “Boundary layers in the vicinity of the prepreg interface in layered composites and the homogenized delamination criterion”, International Journal of Solids and Structures, 267 (2023), 112166
Giuseppe Buttazzo, Maria Stella Gelli, Danka Lučić, “Mass Optimization Problem with Convex Cost”, SIAM J. Math. Anal., 55:5 (2023), 5617
Alexander G. Kolpakov, Igor V. Andrianov, Sergey I. Rakin, Advanced Structured Materials, 195, Mechanics of Heterogeneous Materials, 2023, 341
Alexander G. Kolpakov, Sergey I. Rakin, Advanced Structured Materials, 170, Sixty Shades of Generalized Continua, 2023, 401
Cherednichenko K., D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67
Berkolaiko G., Ettehad M., “Three-Dimensional Elastic Beam Frames: Rigid Joint Conditions in Variational and Differential Formulation”, Stud. Appl. Math., 148:4 (2022), 1586–1623
D. I. Borisov, L. I. Gazizova, “Taylor Series for Resolvents of Operators on Graphs with Small Edges”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S37–S54
A. M. Meirmanov, “On the classical solution of the macroscopic model of in-situ leaching of rare metals”, Izv. Math., 86:4 (2022), 727–769
Matko Ljulj, Kersten Schmidt, Adrien Semin, Josip Tambača, “Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures”, Applicable Analysis, 101:12 (2022), 4046
D.I. Borisov, “Analyticity of resolvents of elliptic operators on quantum graphs with small edges”, Advances in Mathematics, 397 (2022), 108125
Borisov I D., “Spectra of Elliptic Operators on Quantum Graphs With Small Edges”, Mathematics, 9:16 (2021), 1874
D. I. Borisov, M. N. Konyrkulzhaeva, A. I. Mukhametrakhimova, “On Discrete Spectrum of a Model Graph with Loop and Small Edges”, J Math Sci, 257:5 (2021), 551
Danka Lučić, Enrico Pasqualetto, Tapio Rajala, “Characterisation of upper gradients on the weighted Euclidean space and applications”, Annali di Matematica, 200:6 (2021), 2473
Cherednichenko K.D. Ershova Yu.Yu. Kiselev V A., “Effective Behaviour of Critical-Contrast Pdes: Micro-Resonances, Frequency Conversion, and Time Dispersive Properties. i”, Commun. Math. Phys., 375:3 (2020), 1833–1884
D. I. Borisov, A. I. Mukhametrakhimova, “On a Model Graph with a Loop and Small Edges. Holomorphy Property of Resolvent”, J Math Sci, 251:5 (2020), 573
Braides A., Piat V.Ch., “Homogenization of Networks in Domains With Oscillating Boundaries”, Appl. Anal., 98:1-2, SI (2019), 45–63
A. M. Meirmanov, O. V. Galtsev, S. A. Gritsenko, “On homogenized equations of filtration in two domains with common boundary”, Izv. Math., 83:2 (2019), 330–360