Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 1, Pages 71–102
DOI: https://doi.org/10.1070/IM2002v066n01ABEH000372
(Mi im372)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons

G. M. Zhislina, S. A. Vugal'ter

a Scientific Research Institute of Radio Physics
References:
Abstract: We consider the Hamiltonian $H$ of a system of $n$ pseudo-relativistic electrons in a Coulomb field of $n_0$ fixed nuclei. Under the assumption that the total charge of electrons and nuclei is non-negative, it is proved that the discrete spectrum of $H$ is infinite, and a spectral asymptotic formula is derived (without taking the Pauli exclusion principle into account). The results are extended to systems of the same type with long-range potentials more general than Coulomb potentials. It is also proved that the discrete spectrum is finite in the short-range case.
Received: 09.01.2001
Bibliographic databases:
UDC: 517.9
Language: English
Original paper language: Russian
Citation: G. M. Zhislin, S. A. Vugal'ter, “On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons”, Izv. Math., 66:1 (2002), 71–102
Citation in format AMSBIB
\Bibitem{ZhiVug02}
\by G.~M.~Zhislin, S.~A.~Vugal'ter
\paper On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons
\jour Izv. Math.
\yr 2002
\vol 66
\issue 1
\pages 71--102
\mathnet{http://mi.mathnet.ru//eng/im372}
\crossref{https://doi.org/10.1070/IM2002v066n01ABEH000372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1917538}
\zmath{https://zbmath.org/?q=an:1039.81022}
\elib{https://elibrary.ru/item.asp?id=13412119}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3142752791}
Linking options:
  • https://www.mathnet.ru/eng/im372
  • https://doi.org/10.1070/IM2002v066n01ABEH000372
  • https://www.mathnet.ru/eng/im/v66/i1/p71
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:787
    Russian version PDF:203
    English version PDF:23
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024