Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 941–975
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000358
(Mi im358)
 

This article is cited in 24 scientific papers (total in 24 papers)

Krichever correspondence for algebraic varieties

D. V. Osipov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We construct new acyclic resolutions of quasicoherent sheaves. These resolutions are connected with multidimensional local fields. The resolutions obtained are applied to construct a generalization of the Krichever map to algebraic varieties of any dimension.
This map canonically produces two $k$-subspaces $B\subset k((z_1))\dots((z_n))$ and $W\subset k((z_1))\dots((z_n))^{\oplus r}$ from the following data: an arbitrary algebraic $n$-dimensional Cohen–Macaulay projective integral scheme $X$ over a field $k$, a flag of closed integral subschemes $X=Y_0 \supset Y_1 \supset\dots\supset Y_n$ such that $Y_i$ is an ample Cartier divisor on $Y_{i-1}$ and $Y_n$ is a smooth point on all $Y_i$, formal local parameters of this flag at the point $Y_n$, a rank $r$ vector bundle $\mathscr F$ on $X$, and a trivialization of $\mathscr F$ in the formal neighbourhood of the point $Y_n$ where the $n$-dimensional local field $B\subset k((z_1))\dots((z_n))$ is associated with the flag $Y_0\supset Y_1\supset\dots\supset Y_n$. In addition, the map constructed is injective, that is, one can uniquely reconstruct all the original geometric data. Moreover, given the subspace $B$, we can explicitly write down a complex which calculates the cohomology of the sheaf $\mathscr O_X$ on $X$ and, given the subspace $W$, we can explicitly write down a complex which calculates the cohomology of $\mathscr F$ on $X$.
Received: 21.03.2000
Bibliographic databases:
Document Type: Article
MSC: 14F05
Language: English
Original paper language: Russian
Citation: D. V. Osipov, “Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975
Citation in format AMSBIB
\Bibitem{Osi01}
\by D.~V.~Osipov
\paper Krichever correspondence for algebraic varieties
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 941--975
\mathnet{http://mi.mathnet.ru//eng/im358}
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874355}
\zmath{https://zbmath.org/?q=an:1068.14053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0042220544}
Linking options:
  • https://www.mathnet.ru/eng/im358
  • https://doi.org/10.1070/IM2001v065n05ABEH000358
  • https://www.mathnet.ru/eng/im/v65/i5/p91
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:700
    Russian version PDF:224
    English version PDF:27
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024