Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 923–939
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000357
(Mi im357)
 

This article is cited in 4 scientific papers (total in 4 papers)

Best quadrature formulae on Hardy–Sobolev classes

K. Yu. Osipenko

Moscow State Aviation Technological University
References:
Abstract: For functions in the Hardy–Sobolev class $H_\infty^r$, which is defined as the set of functions analytic in the unit disc and satisfying $f^{(r)}(z)|\leqslant 1$, we construct best quadrature formulae that use the values of the functions and their derivatives on a given system of points in the interval $(-1,1)$. For the periodic Hardy–Sobolev class $H_{\infty,\beta}^r$, which is defined as the set of $2\pi$-periodic functions analytic in the strip $|\operatorname{Im}z|<\beta$ and satisfying $|f^{(r)}(z)|\leqslant 1$, we prove that the rectangle rule is the best for an equidistant system of points, and we calculate the error in this formula. We construct best quadrature formulae on the class $H_{p,\beta}$, which is defined similarly to $H_{\infty,\beta}$, except that the boundary values of functions are taken in the $L_p$-norm. We also construct an optimal method for recovering functions in $H_p^r$ from the Taylor information $f(0),f'(0),\dots,f^{(n+r-1)}(0)$.
Received: 23.11.2000
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2001, Volume 65, Issue 5, Pages 73–90
DOI: https://doi.org/10.4213/im357
Bibliographic databases:
MSC: 41A55
Language: English
Original paper language: Russian
Citation: K. Yu. Osipenko, “Best quadrature formulae on Hardy–Sobolev classes”, Izv. RAN. Ser. Mat., 65:5 (2001), 73–90; Izv. Math., 65:5 (2001), 923–939
Citation in format AMSBIB
\Bibitem{Osi01}
\by K.~Yu.~Osipenko
\paper Best quadrature formulae on Hardy--Sobolev classes
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 5
\pages 73--90
\mathnet{http://mi.mathnet.ru/im357}
\crossref{https://doi.org/10.4213/im357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874354}
\zmath{https://zbmath.org/?q=an:1017.41020}
\elib{https://elibrary.ru/item.asp?id=13361629}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 923--939
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000357}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144453793}
Linking options:
  • https://www.mathnet.ru/eng/im357
  • https://doi.org/10.1070/IM2001v065n05ABEH000357
  • https://www.mathnet.ru/eng/im/v65/i5/p73
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:367
    Russian version PDF:193
    English version PDF:11
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024