Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 853–881
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000355
(Mi im355)
 

This article is cited in 15 scientific papers (total in 15 papers)

Riemann–Roch variations

V. V. Golyshev
References:
Abstract: We construct a mirror-type correspondence that assigns variations (that is, local systems, $D$-modules or $l$-adic sheaves) to pairs $(V,C)$, where $V$ is a variety and $C$ is a complex of densely filtered vector bundles over $V$. We consider Calabi–Yau complete intersections in projective spaces. In the particular case when the complex is quasi-isomorphic to the tangent bundle on a generic Calabi–Yau complete intersection, this construction yields the variation that arises in the relative cohomology of the mirror-dual pencil. We call it the Riemann–Roch variation. The Riemann–Roch data of the divisorial sublattice in the $K$-group can be read off the Riemann–Roch local system since it encodes the information about the Euler characteristics of all $\mathscr O(i)$ sheaves (in an essentially non-commutative way).
Received: 12.10.2000
Bibliographic databases:
MSC: 14J32, 18F20, 14N10
Language: English
Original paper language: Russian
Citation: V. V. Golyshev, “Riemann–Roch variations”, Izv. Math., 65:5 (2001), 853–881
Citation in format AMSBIB
\Bibitem{Gol01}
\by V.~V.~Golyshev
\paper Riemann--Roch variations
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 853--881
\mathnet{http://mi.mathnet.ru//eng/im355}
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000355}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874352}
\zmath{https://zbmath.org/?q=an:1068.14047}
\elib{https://elibrary.ru/item.asp?id=14377642}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-7044256942}
Linking options:
  • https://www.mathnet.ru/eng/im355
  • https://doi.org/10.1070/IM2001v065n05ABEH000355
  • https://www.mathnet.ru/eng/im/v65/i5/p3
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:612
    Russian version PDF:290
    English version PDF:31
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024