Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 4, Pages 769–785
DOI: https://doi.org/10.1070/IM2001v065n04ABEH000351
(Mi im351)
 

This article is cited in 9 scientific papers (total in 9 papers)

Spectral properties of solutions of the Tricomi problem for equations of mixed type with two lines of degeneracy, and their applications

K. B. Sabitov, A. A. Karamova

Sterlitamak State Pedagogical Institute
References:
Abstract: We find the eigenvalues and eigenfunctions for the spectral Tricomi problem for an equation of mixed type with two lines of degeneracy and solve the planar and spatial Tricomi problems for equations with the Lavrent'ev–Bitsadze operator.
Received: 01.12.1999
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: K. B. Sabitov, A. A. Karamova, “Spectral properties of solutions of the Tricomi problem for equations of mixed type with two lines of degeneracy, and their applications”, Izv. Math., 65:4 (2001), 769–785
Citation in format AMSBIB
\Bibitem{SabGim01}
\by K.~B.~Sabitov, A.~A.~Karamova
\paper Spectral properties of solutions of the Tricomi problem for equations of mixed type with two lines of degeneracy, and their applications
\jour Izv. Math.
\yr 2001
\vol 65
\issue 4
\pages 769--785
\mathnet{http://mi.mathnet.ru//eng/im351}
\crossref{https://doi.org/10.1070/IM2001v065n04ABEH000351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857714}
\zmath{https://zbmath.org/?q=an:1038.35041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746856526}
Linking options:
  • https://www.mathnet.ru/eng/im351
  • https://doi.org/10.1070/IM2001v065n04ABEH000351
  • https://www.mathnet.ru/eng/im/v65/i4/p133
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024