Abstract:
Although we consider only the concrete problem indicated in the title (the proofs of general theorems would be bulky), our arguments can be adapted for a wide class of singularly perturbed systems of reaction-diffusion type with time-delay in the ordinary part.
Citation:
Yu. S. Kolesov, “Justification of the method of quasinormal forms for Hutchinson's equation with a small diffusion coefficient”, Izv. Math., 65:4 (2001), 749–768
\Bibitem{Kol01}
\by Yu.~S.~Kolesov
\paper Justification of the method of quasinormal forms for Hutchinson's equation with a~small diffusion coefficient
\jour Izv. Math.
\yr 2001
\vol 65
\issue 4
\pages 749--768
\mathnet{http://mi.mathnet.ru/eng/im350}
\crossref{https://doi.org/10.1070/IM2001v065n04ABEH000350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857713}
\zmath{https://zbmath.org/?q=an:1039.35132}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746830106}
Linking options:
https://www.mathnet.ru/eng/im350
https://doi.org/10.1070/IM2001v065n04ABEH000350
https://www.mathnet.ru/eng/im/v65/i4/p111
This publication is cited in the following 3 articles:
M. G. Yumagulov, D. A. Yakshibaeva, “Study of main scenarios of bifurcation for functional differential time-delay equations”, Ufa Math. J., 6:2 (2014), 102–110
Yu. P. Gangrsky, V. I. Zhemenik, N. N. Kolesnikov, V. G. Lukashik, B. N. Markov, G. V. Myshinskiy, O. D. Maslov, G. A. Bozhikov, “Production of the (I = 19/2) high-spin isomer 135Cs in photonuclear reactions”, Phys. Atom. Nuclei, 73:9 (2010), 1477
T. Hayakawa, T. Shizuma, S. Chiba, T. Kajino, Y. Hatsukawa, N. Iwamoto, N. Shinohara, H. Harada, “NEUTRON CAPTURE CROSS SECTION TO113Cd ISOMER ANDs-PROCESS CONTRIBUTION TO RAREp-NUCLIDE115Sn”, ApJ, 707:2 (2009), 859