Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 4, Pages 673–686
DOI: https://doi.org/10.1070/IM2001v065n04ABEH000346
(Mi im346)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients

V. I. Buslaev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In this paper we investigate the convergence set of a regular $C$-fraction with limit-periodic coefficients. This investigation is based on a general assertion concerning the convergence of composites of linear-fractional transformations whose coefficients are limit-periodic functions depending holomorphically on a parameter. We show that the singularity set of such a $C$-fraction possesses an extremal property stated in terms of the transfinite diameter (capacity) of sets.
Received: 07.12.2000
Bibliographic databases:
Document Type: Article
MSC: 30B70, 40A15
Language: English
Original paper language: Russian
Citation: V. I. Buslaev, “On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients”, Izv. Math., 65:4 (2001), 673–686
Citation in format AMSBIB
\Bibitem{Bus01}
\by V.~I.~Buslaev
\paper On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
\jour Izv. Math.
\yr 2001
\vol 65
\issue 4
\pages 673--686
\mathnet{http://mi.mathnet.ru//eng/im346}
\crossref{https://doi.org/10.1070/IM2001v065n04ABEH000346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857709}
\zmath{https://zbmath.org/?q=an:1023.30009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746844963}
Linking options:
  • https://www.mathnet.ru/eng/im346
  • https://doi.org/10.1070/IM2001v065n04ABEH000346
  • https://www.mathnet.ru/eng/im/v65/i4/p35
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:577
    Russian version PDF:218
    English version PDF:17
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024