Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 4, Pages 659–672
DOI: https://doi.org/10.1070/IM2001v065n04ABEH000345
(Mi im345)
 

This article is cited in 5 scientific papers (total in 5 papers)

Derivatives of Siegel modular forms and exponential functions

D. Bertranda, W. V. Zudilinb

a Université Pierre & Marie Curie, Paris VI
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We show that the differential field generated by Siegel modular forms and the differential field generated by exponentials of polynomials are linearly disjoint over $\mathbb C$. Combined with our previous work [3], this provides a complete multidimensional extension of Mahler's theorem on the transcendence degree of the field generated by the exponential function and the derivatives of a modular function. We give two proofs of our result, one purely algebraic, the other analytic, but both based on arguments from differential algebra and on the stability under the action of the symplectic group of the differential field generated by rational and modular functions.
Received: 26.12.2000
Bibliographic databases:
Document Type: Article
MSC: Primary 11F46, 11J81; Secondary 12H05, 14K25, 42A16
Language: English
Original paper language: Russian
Citation: D. Bertrand, W. V. Zudilin, “Derivatives of Siegel modular forms and exponential functions”, Izv. Math., 65:4 (2001), 659–672
Citation in format AMSBIB
\Bibitem{BerZud01}
\by D.~Bertrand, W.~V.~Zudilin
\paper Derivatives of Siegel modular forms and exponential functions
\jour Izv. Math.
\yr 2001
\vol 65
\issue 4
\pages 659--672
\mathnet{http://mi.mathnet.ru//eng/im345}
\crossref{https://doi.org/10.1070/IM2001v065n04ABEH000345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857708}
\zmath{https://zbmath.org/?q=an:1021.11013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746781039}
Linking options:
  • https://www.mathnet.ru/eng/im345
  • https://doi.org/10.1070/IM2001v065n04ABEH000345
  • https://www.mathnet.ru/eng/im/v65/i4/p21
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024