Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 3, Pages 589–606
DOI: https://doi.org/10.1070/IM2001v065n03ABEH000341
(Mi im341)
 

This article is cited in 1 scientific paper (total in 1 paper)

Analogues of the Hausdorff–Young and Hardy–Littlewood theorems

T. V. Rodionov

M. V. Lomonosov Moscow State University
References:
Abstract: We study expansions of functions in the space $L^p$ with respect to systems similar to orthogonal ones. We find estimates for the coefficients and sufficient conditions on them under which the corresponding expansions converge in $L^p$. These results are analogues of the well-known Hausdorff–Young–Riesz and Hardy–Littlewood–Paley theorems in the theory of trigonometric and orthogonal series. It is shown that the resulting estimates are more exact than the classical ones even in the case of orthogonal systems.
Received: 02.03.2000
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: T. V. Rodionov, “Analogues of the Hausdorff–Young and Hardy–Littlewood theorems”, Izv. Math., 65:3 (2001), 589–606
Citation in format AMSBIB
\Bibitem{Rod01}
\by T.~V.~Rodionov
\paper Analogues of the Hausdorff--Young and Hardy--Littlewood theorems
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 589--606
\mathnet{http://mi.mathnet.ru//eng/im341}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000341}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853371}
\zmath{https://zbmath.org/?q=an:0992.42018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746826214}
Linking options:
  • https://www.mathnet.ru/eng/im341
  • https://doi.org/10.1070/IM2001v065n03ABEH000341
  • https://www.mathnet.ru/eng/im/v65/i3/p175
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:585
    Russian version PDF:253
    English version PDF:20
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024