Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 3, Pages 569–587
DOI: https://doi.org/10.1070/IM2001v065n03ABEH000340
(Mi im340)
 

This article is cited in 6 scientific papers (total in 6 papers)

On polynomial automorphisms of affine spaces

V. L. Popov

Moscow State Institute of Electronics and Mathematics
References:
Abstract: In the first part of this paper we prove some general results on the linearizability of algebraic group actions on $\mathbb A^n$. As an application, we get a method of construction and concrete examples of non-linearizable algebraic actions of infinite non-reductive insoluble algebraic groups on $\mathbb A^n$ with a fixed point. In the second part we use these general results to prove that every effective algebraic action of a connected reductive algebraic group $G$ on the $n$-dimensional affine space $\mathbb A^n$ over an algebraically closed field $k$ of characteristic zero is linearizable in each of the following cases: 1) $n=3$; 2) $n=4$ and $G$ is not a one- or two-dimensional torus. In particular, this means that $\operatorname{GL}_3(k)$ is the unique (up to conjugacy) maximal connected reductive subgroup of the automorphism group of the algebra of polynomials in three variables over $k$.
Received: 06.03.2000
Bibliographic databases:
Document Type: Article
MSC: 14L17, 14L30
Language: English
Original paper language: Russian
Citation: V. L. Popov, “On polynomial automorphisms of affine spaces”, Izv. Math., 65:3 (2001), 569–587
Citation in format AMSBIB
\Bibitem{Pop01}
\by V.~L.~Popov
\paper On polynomial automorphisms of affine spaces
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 569--587
\mathnet{http://mi.mathnet.ru//eng/im340}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853370}
\zmath{https://zbmath.org/?q=an:0994.14006}
\elib{https://elibrary.ru/item.asp?id=13364628}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746826620}
Linking options:
  • https://www.mathnet.ru/eng/im340
  • https://doi.org/10.1070/IM2001v065n03ABEH000340
  • https://www.mathnet.ru/eng/im/v65/i3/p153
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:632
    Russian version PDF:232
    English version PDF:22
    References:69
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024