Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 3, Pages 557–568
DOI: https://doi.org/10.1070/IM2001v065n03ABEH000339
(Mi im339)
 

This article is cited in 3 scientific papers (total in 3 papers)

On graded algebras of global dimension 3

D. I. Piontkovskii

Central Economics and Mathematics Institute, RAS
References:
Abstract: Assume that a graded associative algebra $A$ over a field $k$ is minimally presented as the quotient algebra of a free algebra $F$ by the ideal $I$ generated by a set $f$ of homogeneous elements. We study the following two extensions of $A$: the algebra $\overline F=F/I\oplus I/I^2\oplus\dotsb$ associated with $F$ with respect to the $I$-adic filtration, and the homology algebra $H$ of the Shafarevich complex $\operatorname{Sh}(f,F)$ (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the $A$-algebra $H$ in this case is free, and the algebra $\overline F$ is isomorphic to the quotient algebra of a free $A$-algebra by the ideal generated by a so-called strongly free (or inert) set.
Received: 04.05.2000
Bibliographic databases:
MSC: 16W50, 16E40
Language: English
Original paper language: Russian
Citation: D. I. Piontkovskii, “On graded algebras of global dimension 3”, Izv. Math., 65:3 (2001), 557–568
Citation in format AMSBIB
\Bibitem{Pio01}
\by D.~I.~Piontkovskii
\paper On graded algebras of global dimension~3
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 557--568
\mathnet{http://mi.mathnet.ru//eng/im339}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853369}
\zmath{https://zbmath.org/?q=an:1003.16003}
\elib{https://elibrary.ru/item.asp?id=13373556}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28244484301}
Linking options:
  • https://www.mathnet.ru/eng/im339
  • https://doi.org/10.1070/IM2001v065n03ABEH000339
  • https://www.mathnet.ru/eng/im/v65/i3/p139
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:507
    Russian version PDF:193
    English version PDF:28
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024