Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 3, Pages 437–467
DOI: https://doi.org/10.1070/IM2001v065n03ABEH000334
(Mi im334)
 

This article is cited in 20 scientific papers (total in 21 papers)

Abelian Lagrangian algebraic geometry

A. L. Gorodentseva, A. N. Tyurinb

a Independent University of Moscow
b Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper begins a detailed exposition of a geometric approach to quantization, which is presented in a series of preprints ([23], [24], …) and which combines the methods of algebraic and Lagrangian geometry. Given a prequantization $U (1)$-bundle $L$ on a symplectic manifold $M$, we introduce an infinite-dimensional Kähler manifold $\mathscr P^{\mathrm{hw}}$ of half-weighted Planck cycles. With every Kähler polarization on $M$ we canonically associate a map $\mathscr P^{\mathrm{hw}}\overset{\gamma}{\to}H^{0}(M,L)$ to the space of holomorphic sections of the prequantization bundle. We show that this map has a constant Kähler angle and its “twisting” to a holomorphic map is the Borthwick–Paul–Uribe map. The simplest non-trivial illustration of all these constructions is provided by the theory of Legendrian knots in $S^3$.
Received: 15.08.2000
Bibliographic databases:
MSC: 53D50, 53C15
Language: English
Original paper language: Russian
Citation: A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467
Citation in format AMSBIB
\Bibitem{GorTyu01}
\by A.~L.~Gorodentsev, A.~N.~Tyurin
\paper Abelian Lagrangian algebraic geometry
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 437--467
\mathnet{http://mi.mathnet.ru//eng/im334}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853364}
\zmath{https://zbmath.org/?q=an:1005.53057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844480545}
Linking options:
  • https://www.mathnet.ru/eng/im334
  • https://doi.org/10.1070/IM2001v065n03ABEH000334
  • https://www.mathnet.ru/eng/im/v65/i3/p15
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024