Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 6, Pages 1297–1311
DOI: https://doi.org/10.1070/im2000v064n06ABEH000316
(Mi im316)
 

This article is cited in 8 scientific papers (total in 8 papers)

Hilbert series and relations in algebras

D. I. Piontkovskii

Central Economics and Mathematics Institute, RAS
References:
Abstract: Let $A$be a graded associative algebra over a field, $I\triangleleft A$ an ideal generated by a set $\alpha\subset A$ of homogeneous elements, and $B=A/I$. In this paper we get estimates relating the Hilbert series of the algebras $A$$B$ and the number of elements of $\alpha$. As in the Golod–Shafarevich theorem, these estimates hold with equality exactly for strongly free sets $\alpha$, which gives new characterizations of such sets. As a corollary, we prove that in the class of finitely generated algebras over a field of characteristic zero there is no algorithm to decide (from the given generators and relations of the algebra) whether the radius of convergence of the Hilbert series equals a given rational number, and there is no algorithm to decide whether the value of the Hilbert function at a given point is equal to a given number.
We also introduce and study extremal graded algebras (such that taking any quotient strictly increases the radius of convergence of the Hilbert series). In particular, we prove that this class contains free products of two non-trivial algebras, quadratic algebras with one relation and at least three generators, and Artin–Shelter regular non-Noetherian algebras of global dimension 2.
Received: 05.01.2000
Bibliographic databases:
MSC: 16W50, 16E40
Language: English
Original paper language: Russian
Citation: D. I. Piontkovskii, “Hilbert series and relations in algebras”, Izv. Math., 64:6 (2000), 1297–1311
Citation in format AMSBIB
\Bibitem{Pio00}
\by D.~I.~Piontkovskii
\paper Hilbert series and relations in algebras
\jour Izv. Math.
\yr 2000
\vol 64
\issue 6
\pages 1297--1311
\mathnet{http://mi.mathnet.ru//eng/im316}
\crossref{https://doi.org/10.1070/im2000v064n06ABEH000316}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1817254}
\zmath{https://zbmath.org/?q=an:1019.16015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167957400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744509866}
Linking options:
  • https://www.mathnet.ru/eng/im316
  • https://doi.org/10.1070/im2000v064n06ABEH000316
  • https://www.mathnet.ru/eng/im/v64/i6/p205
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024